lecture-2-_mathematical_modeling_of_dynamic_systems.pdf

ummehr2017 0 views 85 slides Oct 09, 2025
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

CS Slide on Mathametical modeling of Dynamic System


Slide Content

Dr. Imtiaz Hussain
Associate Professor
Mehran University of Engineering & Technology Jamshoro, Pakistan
email: [email protected]
URL :http://imtiazhussainkalwar.weebly.com/
Note:Idonotclaimanyoriginalityintheselectures.Thecontentsofthispresentationare
mostlytakenfromthebookofOgatta,NormanNise,BishopandBC.Kuoandvariousother
internetsources. 1
Control Systems (CS)
6
th
Semester 14ES (SEC-I)

Outline
•Introduction
•Types of Models
•Mathematical Modeling of
–Electrical Systems
–Electronic Systems
–Mechanical Systems
–Electromechanical Systems
2

Types of Systems
•StaticSystem:Ifasystemdoesnotchange
withtime,itiscalledastaticsystem.
•DynamicSystem:Ifasystemchangeswith
time,itiscalledadynamicsystem.
3

Dynamic Systems
•Asystemissaidtobedynamicifitscurrentoutputmaydependon
thepasthistoryaswellasthepresentvaluesoftheinputvariables.
•Mathematically, Time Input, ::
]),([)(
tu
tuty   0
Example: A moving mass
M
y
u
Model: Force=Mass x AccelerationuyM

Ways to Study a System
5
System
Experiment with a
model of the System
Experiment with actual
System
Physical Model
Mathematical Model
Analytical Solution
Simulation
Frequency Domain Time Domain Hybrid Domain

Model
•Amodelisasimplifiedrepresentationor
abstractionofreality.
•Realityisgenerallytoocomplextocopy
exactly.
•Muchofthecomplexityisactuallyirrelevant
inproblemsolving.
6

What is Mathematical Model?
Asetofmathematicalequations(e.g.,differentialeqs.)that
describestheinput-outputbehaviorofasystem.
What is a model used for?
•Simulation
•Prediction/Forecasting
•Prognostics/Diagnostics
•Design/Performance Evaluation
•Control System Design

Black Box Model
•Whenonlyinputandoutputareknown.
•Internaldynamicsareeithertoocomplexor
unknown.
•Easy to Model
8
Input Output

Grey Box Model
•Wheninputandoutputandsomeinformation
abouttheinternaldynamicsofthesystemis
known.
•Easier than white box Modelling.
9
u(t) y(t)
y[u(t), t]

White Box Model
•Wheninputandoutputandinternaldynamics
ofthesystemisknown.
•Oneshouldknowhavecompleteknowledge
ofthesystemtoderiveawhiteboxmodel.
10
u(t) y(t)2
2
3
dt
tyd
dt
tdu
dt
tdy )()()(


Modeling of Electrical Systems
11

Basic Elements of Electrical Systems
12
Component Symbol
V-I Relation
(Time Domain)
V-I Relation
(Frequency
Domain)
Resistor
Capacitor
Inductordt
tdi
Ltv
L
L
)(
)( dtti
C
tv
cc  )()(
1 Rtitv
RR )()( RsIsV
RR )()( )()( sI
Cs
sV
cc
1
 )()( sLsIsV
LL

Example#1
•Thetwo-portnetworkshowninthefollowingfigurehasv
i(t)as
theinputvoltageandv
o(t)astheoutputvoltage.Findthe
transferfunctionV
o(s)/V
i(s)ofthenetwork.
13
Ci(t)v
i( t) v
o(t) dtti
C
Rtitv
i )()()(
1  dtti
C
tv
o )()(
1

Example#1
•TakingLaplacetransformofbothequations,consideringinitial
conditionstozero.
•Re-arrangebothequationsas:
14 dtti
C
Rtitv
i )()()(
1  dtti
C
tv
o )()(
1 )()()( sI
Cs
RsIsV
i
1
 )()( sI
Cs
sV
o
1
 )()( sIsCsV
o ))(()(
Cs
RsIsV
i
1


Example#1
•SubstituteI(s)inequationonleft
15)()( sIsCsV
o ))(()(
Cs
RsIsV
i
1
 ))(()(
Cs
RsCsVsV
oi
1
 )(
)(
)(
Cs
RCs
sV
sV
i
o
1
1

 RCssV
sV
i
o


1
1
)(
)(

Example#1
•Thesystemhasonepoleat
16RCssV
sV
i
o


1
1
)(
)( RC
sRCs
1
01 

Example#2
•Find the transfer function G(S) of the following
two port network.
17
i(t)v
i(t) v
o(t)
L
C

Example#2
•Simplifynetworkbyreplacingmultiplecomponentswith
theirequivalenttransformimpedance.
18
I(s)V
i(s) V
o(s)
L
C
Z

Transform Impedance (Resistor)
19
i
R(t)
v
R(t)
+
-
I
R(S)
V
R(S)
+
-
Z
R= R
Transformation

Transform Impedance (Inductor)
20
i
L(t)
v
L(t)
+
-
I
L(S)
V
L(S)
+
-
Li
L(0)
Z
L=LS

Transform Impedance (Capacitor)
21
i
c(t)
v
c(t)
+
-
I
c(S)
V
c(S)
+
-
Z
C(S)=1/CS

Equivalent Transform Impedance (Series)
•Considerfollowingarrangement,findoutequivalent
transformimpedance.
22
L
C
RCLRT ZZZZ  Cs
LsRZ
T
1


Equivalent Transform Impedance (Parallel)
23CLRT ZZZZ
1111

C
L
RCs
LsRZ
T
1
1111


Equivalent Transform Impedance
•Findoutequivalenttransformimpedanceof
followingarrangement.
24
L
2
L
2
R
2
R
1

Back to Example#2
25
I(s)V
i(s) V
o(s)
L
C
ZLRZZZ
111
 LsRZ
111
 RLs
RLs
Z


1

Example#2
26
I(s)V
i(s) V
o(s)
L
C
ZRLs
RLs
Z


1 )()()( sI
Cs
ZsIsV
i
1
 )()( sI
Cs
sV
o
1

Modeling of Electronic Systems
27

Operational Amplifiers
281
2
Z
Z
V
V
in
out
 1
2
1
Z
Z
V
V
in
out


Example#3
•Find out the transfer function of the following
circuit.
291
2
Z
Z
V
V
in
out


Example#4
•Find out the transfer function of the following
circuit.
30
v
1

Example#5
•Findoutthetransferfunctionofthefollowing
circuit.
31
v
1

Example#6
•Findoutthetransferfunctionofthefollowing
circuitanddrawthepolezeromap.
32
10kΩ
100kΩ

Modeling of Mechanical Systems
33
•Part-I: Translational Mechanical System
•Part-II: Rotational Mechanical System
•Part-III: Mechanical Linkages

Basic Types of Mechanical Systems
•Translational
–Linear Motion
•Rotational
–Rotational Motion
34

TRANSLATIONAL MECHANICAL SYSTEMS
Part-I
35

Basic Elements of Translational Mechanical Systems
Translational Spring
i)
Translational Mass
ii)
Translational Damper
iii)
36

Translational Spring
i)
Circuit Symbols
Translational Spring
•Atranslationalspringisamechanicalelementthat
canbedeformedbyanexternalforcesuchthatthe
deformationisdirectlyproportionaltotheforce
appliedtoit.
Translational Spring
37

Translational Spring
•IfFistheappliedforce
•Thenisthedeformationif
•Or isthedeformation.
•Theequationofmotionisgivenas
•WhereisstiffnessofspringexpressedinN/m2x 1x 0
2x 1x )(
21xx )(
21xxkF  k F F
38

Translational Mass
Translational Mass
ii)
•TranslationalMassisaninertia
element.
•Amechanicalsystemwithout
massdoesnotexist.
•IfaforceFisappliedtoamass
anditisdisplacedtoxmeters
thentherelationb/wforceand
displacementsisgivenby
Newton’slaw.
M)(tF )(tx xMF 
39

Translational Damper
Translational Damper
iii)
•Whentheviscosityordragisnot
negligibleinasystem,weoften
modelthemwiththedamping
force.
•Allthematerialsexhibitthe
propertyofdampingtosome
extent.
•Ifdampinginthesystemisnot
enoughthenextraelements(e.g.
Dashpot)areaddedtoincrease
damping.
40

Common Uses of Dashpots
Door Stoppers
Vehicle Suspension
Bridge Suspension
Flyover Suspension
41

Translational DamperxCF
•Where Cis damping coefficient (N/ms
-1
).)(
21xxCF 

Example-7
•Consider the following system (friction is negligible)
43
•Free Body Diagram
MF kf Mf k F x M
•Where and are forces applied by the spring and
inertial force respectively. kf Mf

Example-7
44
•Then the differential equation of the system is:kxxMF 
•Taking the Laplace Transform of both sides and ignoring
initial conditions we get
MF kf Mf MkffF  )()()( skXsXMssF 
2

45)()()( skXsXMssF 
2
•The transfer function of the system iskMssF
sX


2
1
)(
)(
•if1
2000
1000



Nmk
kgM 2
0010
2


ssF
sX .
)(
)(
Example-7

46
•The pole-zero map of the system is2
0010
2


ssF
sX .
)(
)(
Example-7

Example-8
•Consider the following system
47
•Free Body Diagramk F x M C
MF kf Mf Cf CMk fffF 

Example-8
48
Differential equation of the system is:kxxCxMF  
Taking the Laplace Transform of both sides and ignoring
Initial conditions we get)()()()( skXsCsXsXMssF 
2 kCsMssF
sX


2
1
)(
)(

Example-8
49kCsMssF
sX


2
1
)(
)(
•if1
1
1000
2000
1000





msNC
Nmk
kgM
/ 2
001.0
)(
)(
2


sssF
sX -1 -0.5 0 0.5 1
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Pole-Zero Map
Real Axis
Imaginary Axis

Example-9
•Consider the following system
50
•Mechanical Networkk F 2x M 1x B
↑ Mk B F 1x 2x

Example-9
51
•Mechanical Network
↑ Mk B F 1x 2x )(
21xxkF 
At node 1x
At node 2x 22120 xBxMxxk  )(

Example-10
52k )(tf 2x 1M 4B 3B 2M 1x 1B 2B
↑ M
1k 1B )(tf 1x 2x 3B 2B
M
24B

ROTATIONAL MECHANICAL SYSTEMS
Part-I
53

Basic Elements of Rotational Mechanical Systems
Rotational Spring)(
21kT 2 1
54

Basic Elements of Rotational Mechanical Systems
Rotational Damper2 1 )(
21

CT T C
55

Basic Elements of Rotational Mechanical Systems
Moment of Inertia

JT  T J
56

Example-111 T 1J 1k 1B 2k 2J 2 3
↑ J
11k T 1 3 1B
J
22 2k
57

Example-12
↑ J
11k 1B T 1 3 2B 3B
J
24B 2 1 T 1J 1k 3B 2B 4B 1B 2J 2 3
58

Example-131 T 1J 1k 2B 2J 2 2k
591B

MECHANICAL LINKAGES
Part-III
60

Gear
•Gearisatoothedmachinepart,such
asawheelorcylinder,thatmeshes
withanothertoothedpartto
transmitmotionortochangespeed
ordirection.
61

Fundamental Properties
•Thetwogearsturninoppositedirections:oneclockwiseand
theothercounterclockwise.
•Twogearsrevolveatdifferentspeedswhennumberofteeth
oneachgeararedifferent.
62

Gear Ratio
•Youcancalculatethegearratiobyusing
thenumberofteethofthedriver
dividedbythenumberofteethofthe
follower.
•Wegearupwhenweincreasevelocity
anddecreasetorque.
Ratio:3:1
•Wegeardownwhenweincreasetorque
andreducevelocity.
Ratio:1:3
Gear Ratio = # teeth input gear / # teeth output gear
= torque in / torque out = speed out / speed in
Follower
Driver
63

Mathematical Modeling of Gear Trains
•Gearsincreaseorreduceangularvelocity(while
simultaneouslydecreasingorincreasingtorque,such
thatenergyisconserved).
642211  NN  1N
Number of Teeth of Driving Gear1
Angular Movement of Driving Gear2N
Number of Teeth of Following Gear2
Angular Movement of Following Gear
Energy of Driving Gear = Energy of Following Gear

Mathematical Modeling of Gear Trains
•Inthesystembelow,atorque,τ
a,isappliedtogear1(with
numberofteethN
1,momentofinertiaJ
1andarotationalfriction
B
1).
•It,inturn,isconnectedtogear2(withnumberofteethN
2,
momentofinertiaJ
2andarotationalfrictionB
2).
•Theangleθ
1isdefinedpositiveclockwise,θ
2isdefinedpositive
clockwise.Thetorqueactsinthedirectionofθ
1.
•AssumethatT
Listheloadtorqueappliedbytheloadconnected
toGear-2.
65
B
1
B
2
N
1
N
2

Mathematical Modeling of Gear Trains
•ForGear-1
•ForGear-2
•Since
•therefore
66
B
1
B
2
N
1
N
22211 NN 11111 TBJ
a  

Eq(1)LTBJT 
22222 

Eq(2)1
2
1
2 
N
N

Eq(3)

Mathematical Modeling of Gear Trains
•GearRatioiscalculatedas
•Putthisvalueineq(1)
•PutT
2fromeq(2)
•Substituteθ
2fromeq(3)
67
B
1
B
2
N
1
N
22
2
1
1
1
2
1
2
T
N
N
T
N
N
T
T
 2
2
1
1111 T
N
N
BJ
a  
 )(
La TBJ
N
N
BJ 
2222
2
1
1111 
 )(
2
2
1
21
2
1
2
2
1
1111 La T
N
N
B
N
N
J
N
N
BJ  


Mathematical Modeling of Gear Trains
•Aftersimplification
68)(
2
2
1
21
2
1
2
2
1
1111 La T
N
N
B
N
N
J
N
N
BJ  
 La T
N
N
B
N
N
BJ
N
N
J
2
1
12
2
2
1
1112
2
2
1
11 

















 
 La T
N
N
B
N
N
BJ
N
N
J
2
1
12
2
2
1
112
2
2
1
1 

































 
 2
2
2
1
1 J
N
N
JJ
eq 







 2
2
2
1
1 B
N
N
BB
eq 







 Leqeqa T
N
N
BJ
2
1
11  


Mathematical Modeling of Gear Trains
•Forthreegearsconnectedtogether
693
2
4
3
2
2
1
2
2
2
1
1 J
N
N
N
N
J
N
N
JJ
eq 
























 3
2
4
3
2
2
1
2
2
2
1
1 B
N
N
N
N
B
N
N
BB
eq 


























Modeling of Electromechanical
Systems
70

71
D.C Drives
•VariableVoltagecanbeappliedtothearmatureterminalsoftheDC
motor.
•Anothermethodistovarythefluxperpoleofthemotor.
•Thefirstmethodinvolveadjustingthemotor’sarmaturewhilethe
lattermethodinvolvesadjustingthemotorfield.Thesemethodsare
referredtoas“armaturecontrol”and“fieldcontrol.”

oltageback-emf vwhere e,e
dt
di
LiRu
bb
a
aaa  Mechanical SubsystemBωωJT
motor 
Input: voltage u
Output: Angular velocity 
Electrical Subsystem(loop method):
Example-14: Armature Controlled D.C Motor
u
i
a
T
R
a L
a
J

B
e
b
72

Torque-Current:
Voltage-Speed:atmotor iKT 
•Combingpreviousequationsresultsinthefollowingmathematical
model:
Power Transformation:ωKe
bb 






0
at
baa
a
a
i-KBωJ
uωKiR
dt
di
L

Example-14: Armature Controlled D.C Motor
u
i
a
T
R
a L
a
J

B
e
b
73

TakingLaplacetransformofthesystem’sdifferentialequationswith
zeroinitialconditionsgives:
Eliminating I
ayields the input-output transfer function 
btaaaa
t
KKBRsBLJRJsL
K
U(s)
Ω(s)


2  
 





0(s)IΩ(s)-KBJs
U(s)Ω(s)K(s)IRsL
at
baaa
Example-14: Armature Controlled D.C Motor
74

Reduced Order Model
Assuming small inductance, L
a0
Example-14: Armature Controlled D.C Motor
75)(
btaa
t
KKBRsJR
K
U(s)
Ω(s)


If output of the D.Cmotor is angular position θthen we know
Which yields following transfer function
Example-14: Armature Controlled D.C Motor)()( sssor
dt
d


 
u
i
a
T
R
a L
a
J
θ
B
e
b
76)]([
btaa
t
KKBRsJRs
K
U(s)
(s)


Applying KVLat field circuit
Example-15: Field Controlled D.C Motor
i
f
T
m
R
f
L
f J
ωB
R
a L
a
e
a
e
fdt
di
LRie
f
ffff

Mechanical SubsystemBωωJT
m 
77

Torque-Current:ffm
iKT
Combing previous equations and taking Laplace transform (considering
initial conditions to zero) results in the following mathematical model:
Power Transformation:






)()()(
)()()(
sIKsBsJs
sIsLsIRsE
ff
fffff
where K
f: torque constant
Example-15: Field Controlled D.C Motor
78

If angular position θis output of the motor
Eliminating I
f(S)yields
Example-15: Field Controlled D.C Motor  )(
ff
f
f RsLBJs
K
(s)E
Ω(s)


i
f
T
m
R
f
L
f J
θB
R
a L
a
e
a
e
f  )(
ff
f
f RsLBJss
K
(s)E
(s)



79

+
k
p
-
J
L
_
i
a
e
b
R
a
L
a
+
T
r c
e
a
_
+
e
_
+
N
1
N
2
B
L
θ
i
f = Constant
J
M
B
M
80
Example-16: Angular Position ControlSystem

Numerical Values for System constants
r =angular displacement of the reference input shaft
c =angular displacement of the output shaft
θ=angular displacement of the motor shaft
K
1=gain of the potentiometer shaft = 24/π
K
p=amplifier gain = 10
e
a=armature voltage
e
b=back emf
R
a=armature winding resistance = 0.2 Ω
L
a =armature winding inductance = negligible
i
a=armature winding current
K
b=back emfconstant = 5.5x10
-2
volt-sec/rad
K
t=motor torque constant = 6x10
-5
N-m/ampere
J
m= moment of inertia of the motor = 1x10
-5
kg-m
2
B
m=viscous-friction coefficients of the motor = negligible
J
L=moment of inertia of the load = 4.4x10
-3
kgm
2
B
L=viscous friction coefficient of the load = 4x10
-2
N-m/rad/sec
n=gear ratio = N
1/N
2= 1/10
81

Example-16: Angular Position Control System
82
•Transfer function of the armature controlled D.C motor with load connected to it
is given by
•Where
�
??????�=�
??????+
??????
1
??????
2
2
�
??????=1×10
−5
+
1
10
2
×4.4×10
−3
=5.4×10
−5
�
??????�=�
??????+
??????
1
??????
2
2
�
??????=
1
10
2
×4×10
−2
=4×10
−4
??????(�)
??????
�(�)
=
6
�(1.08�+8.33)
??????(�)
??????
�(�)
=
�
??????
��
??????��
�+�
??????��
��+�
??????��
�+�
??????�
�

Example-16: Angular Position Control System
83
??????�=�
1��−??????(�)
•Error is difference between reference input ????????????and out calculated ????????????and can be
calculated as
•Output of amplifier is
•Merging eq(a) and eq(b) yields
•Relation between angular position of motor ??????and angular position of load ??????is given as
•or
E�=
24
??????
��−�(�)=7.64��−�(�)
??????
��=�
�??????�=10??????(�)
??????
��=76.4��−�(�)
(a)
(b)
��=
1
10
??????(�)
10��=??????(�)

Example-16: Angular Position Control System
84
•Final Closed loop transfer function of the system can now be written as
10�(�)
76.4��−�(�)
=
6
�(1.08�+8.33)
�(�)
��
=
42.3
�
2
+7.69�+42.3
??????(�)
??????
�(�)
=
6
�(1.08�+8.33)

END OF LECTURE-2
To download this lecture visit
http://imtiazhussainkalwar.weebly.com/
85