Lecture-2- mechanical vibrations, Mohamed salem.pdf

DinaSaad22 5 views 35 slides Sep 14, 2025
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Vibration course for mechanical engineering by Dr. mohamed Sameh


Slide Content

Dr. Mohamed Sameh Salem
Contact Info:-
Email: [email protected]
Mobile: 0545350311
1Lecture (1)
Mechanical Vibrations
ME 242
Dr. Mohamed S. Salem
ةعمجملا ةعماج
ةسدنهلا ةيلك
ةيعانصلا و ةيكيناكيملا ةسدنهلا مسق

-A mass, m, of a system is subjected to a repeated motion (or
vibration ) due to external excitation. This excitation could affect only
once or continuously.
-If not prevented, this motion may damage the system to which the
mass is attached.
-Therefore, a spring and a damper are added to minimize (or remove
) the effect of that motion (or vibrations) on the mass system.
-The vibration system is then composed of:
MASS + SPRING + DAMPER
The purpose of studying Mechanical Vibrations

Mass – Spring – Dashpot system
Kinetic energy storing elements, inertia
element: mass m or mass moment of inertia J
Potential energy storing elements: spring
element and/or gravity
Energy dissipating elements: damper
Force Element (F)

Inertia Elements

Inertia elements
•Inertia element in vibrating systems stores the Kinetic Energy (T)
and it could be:
–Mass, m for rectilinear or curvilinear vibrations of particles or
rigid bodies.
•??????=
1
2
�ሶ�
2
is the kinetic energy (in Joule) for the mass m and
ሶ� is the velocity of the mass (m/s).
–Mass moment of inertia, J, for rotation about a fixed axis for
rigid bodies.
•[Remember that particles do not rotate about fixed axis
passing through it since particles have negligible size]
•[We used to refer to the mass moment of inertia as I, in
dynamics. Here, in vibrations, we use the letter J instead]

Mass Element (M or m) (kg)
•MassorInertiaElements:
•Themassorinertiaelementisassumedtobearigidbody.Itcangainorlose
potentialandkineticenergies.

•Motion
•Force �=�.??????
°°
•PotentialEnergy(PE) ??????�=±�??????ℎ
•KineticEnergy(KE)
Translational
Rotational
1
��=
2
�??????
°
2
1
2
��=J�??????
°
2
Mass Element (M or m) (kg)

12
�
2 3
�.�
12
1 �
J=��
2
�=
J�=J�.�+��
2
=
1
2
��
2
+�
2
1
=��
2
•MassmomentofInertia(J
o)(kg.m
2) J�=J�.�+��
2
J
C.G:massmomentofInertiaatthecenterofgravityoftheelement
d:thedistancebetweenthecenterofrotationandthecenterofgravityoftheelement
•LumpedMass:
misconcentratedata pointanditsradiusiszero
J�=J�.�+��
2
=0+��
2
=��
2
•RodMass:
When(M)cannotbe neglected
Mass Element (M or m) (kg)

•Rodwithlumpedmass:
J�=J??????��+J�.�=
1
3
��
2
+��
2
•CylinderorDiskmass:
�.�
1
2
J=��
2�=�
�J=J�.�+ ��
2 2 2
31
=��+��=��
2 2
2
�.�
•Spheremass:
2
5
J=��
2�=�
�J=J
2 2 2
2 7
�.�+��=
5
��+��=
5
��
2
Mass Element (M or m) (kg)

Combinationofmasses(m
eq)
Case1:TranslationalMassesConnectedbyaRigidBar.
Mass Element (M or m) (kg)

Combinationofmasses(m
eq)
Case1:TranslationalandRotationalMassesCoupledTogether
Mass Element (M or m) (kg)

Spring Elements

•Aspringisatypeofmechanicallink,whichinmostapplicationsisassumedtohave
negligiblemassanddamping.
•Themostcommontypeofspringisthehelical-coilspringusedinretractablepens
andpencils,staplers,andsuspensionsoffreighttrucksandothervehicles.
•Severalothertypesofspringscanbeidentifiedinengineeringapplications.Infact,
anyelasticordeformablebodyormember,suchasacable,bar,beam,shaftorplate
canbeconsideredasaspring.

Types of Mechanical Springs

Types of Mechanical Springs

•Force-Deformationdiagramofthehelicalspring
LinearSpring
�=????????????
SoftorHardSpring
�=�??????+�??????
3

??????.??????
a)Translational Spring(N/m)
•Force �=????????????
•PotentialEnergy(PE)
1
??????�=
2
????????????
2
????????????.??????
b)TorsionalSpring(N.m/deg)
•Torque ??????=??????????????????
•PotentialEnergy(PE)
1
??????�=
2
??????????????????
2

•Thestiffnessofthehelicalspring
��
4
??????=
8�
3�
G:ModulusofRigidity or Elasticity (Shear modulus)(N/m2)
d:Diameterofthespringwire(m)
D:Centraldiameterofthespring(m)
n:No.ofactivecoils

Helical Spring(cont.)
Spring force, F = �� ; where k is the spring stiffness (N/m)and x is the spring deflection
Spring potential energy, U
s =
1
2
��
2
; where k is the spring stiffness and x is the spring deflection
measured from unstretched length.

Measuring stiffness of helical springs
Free length of the
spring
(unstretched
length)
m
1
m
2
m
3
1.Hang a spring freely
2.Hang a mass m
1 to the end of the spring and measure the deflection x
1
3.Add more mass such that the total mass is m
2 and the spring deflection is x
2
4.Add more mass such that the total mass is m
3 and the spring deflection is x
3.
5.Report your results in the following table:

Measuring stiffness of helical springs
Mass, kg*
Spring force, F (N)
[Weight in this case]
Deflection, x (m)
0.0 0.0 0.0
0.2 0.2*9.81=1.962 0.01
0.4 0.4*9.81=3.924 0.02
0.6 0.6*9.81=5.886 0.03
6.Plot the weight and the deflection on a graph as the following:
F
The slope of the linear part of the curve is
the stiffness of the spring, K
* Numbers are for illustration only

Torsional springl
EI
k=
Spring Moment, M
t = �?????? ; where k is the spring torsional stiffness (N.m/rad) and θ is the spring
angular deflection in rad.
Spring potential energy, U
s =
1
2
�θ
2

Longitudinal stiffness of bars
Where
F = is the applied force (N)
E=Modulus of elasticity ( a material property) (N/m
2
)
A=bar cross sectional area (m
2
)
l = bar length (m)

Torsional stiffness of rods (or shafts)
Where G=shear modulus of rigidity of the rod
J
p=Polar moment of inertia of the rod
= πd
4
/32; d=diameter of the rod
l = length of the rod
Spring Moment, M
t = �?????? ; where k is the rod torsional stiffness (N.m/rad) and θ is the spring
angular deflection in rad.

This corresponding to leaf spring
Stiffness, k, is given by:- 3
3
l
EI
k=
Transverse stiffness of cantilevered beam

Spring equivalent to cantilever beam

Theequivalentstiffnessofmechanicalelements(K
eq)
•Rodundertensionorcomparison(Translational)
??????��=
�??????
�
??????
??????

��=
•Rodundertorsion(Rotational)
��
�
32
??????
�=�
4
E:ModulusofElasticity(N/m
2)
A:CrossSec.Area(m
2)
L:RodLength(m)
G:ModulusofRigidity(N/m
2)
J:PolarMomentofInertia(m
4)
L:RodLength(m)

Theequivalentstiffnessofmechanicalelements(K
eq)
•Fixed-FreeBeam(Cantilever)
•SimplysupportedBeam(Hinged-Roller)
??????��=
3��
�
3
E:ModulusofElasticity(N/m
2)
I:2
ndMomentofArea(m
4)
L:RodLength(m)
�ℎ
3
�=
12
??????
�=�
64
4
??????��=
48��
�
3
E:ModulusofElasticity(N/m
2)
I:2
ndMomentofArea(m
4)
L:RodLength(m)

Deflection of Beams and Plates
�=
��??????� ??????
������????????????�� ��??????ℎ� ��??????� ��??????�?????? �(�)
x is the distance form the left hand to the load P.

�=
��??????� ??????
������????????????�� ��??????ℎ� ��??????� ��??????�?????? �(�)
x is the distance form the left hand to the load P.
Deflection of Beams and Plates

Deflection of Beams and Plates

Example 1
In Figure (a), a particle of mass m is attached to the midspan of a simply supported beam of
length L, elastic modulus E, and area moment of inertia I. determine the beam stiffness
At the mid span, x=a=L/2, and either equation can be used to determine the deflection. If we
use the first equation:
y
L
2
=
??????
??????
2
??????
2
6????????????�
??????
2

??????
2
2

??????
2
2
=
????????????
3
48????????????
�=
??????
�
=
48????????????
??????
3
;stiffness is

If we use the second equation:
y
L
2
=
??????
??????
2
??????−
??????
2
6????????????�
2??????
??????
2

??????
2
2

??????
2
2
=
????????????
3
48????????????
�=
??????
�
=
48????????????
??????
3
;stiffness is
Both equations give the same deflection at load point and hence either of them can be used.
The stiffness k given:
�=
48????????????
??????
3
And the beam can modeled as a mass-spring system

Dr. Mohamed Sameh Salem
Associate professor, Mechanical Power Engineering
[email protected]
Tel: 0545350311