lecture 2 - PHES.pdf (energy storage systems)

DinaSaad22 55 views 66 slides May 12, 2024
Slide 1
Slide 1 of 66
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66

About This Presentation

Pumped-storage hydroelectricity


Slide Content

EnergyStorageSystems
PUMPED-HYDRO ENERGY
STORAGE

Introduction2

3
PotentialEnergyStorage
Energycanbestoredaspotentialenergy
Consideramass,melevatedtoaheight,ℎ
Itspotentialenergyincreaseis:
E = mgh
Liftingthemassrequiresaninputof
work equalto(atleast)theenergy
increaseof themass
Weputenergyintoliftthemass
Thatenergyisstoredinthemassas
potentialenergy

4
PotentialEnergyStorage
Ifweallowthemasstofallbacktoits
originalheight,wecancapturethe
storedpotentialenergy
Potentialenergyconvertedto
kinetic energyasthemassfalls
Kineticenergycanbecapturedto
perform work
Perhapsconvertedtorotational
energy, andthentoelectricalenergy

5
Pumped-HydroEnergyStorage
Potentialenergy
storagein
elevatedmassis
thebasisfor
pumped-hydro
energystorage
(PHES)
Energyusedto
pumpwaterfrom
alowerreservoirtoanupperreservoir
Electricalenergyinputtomotorsis convertedto
rotational mechanicalenergy
Pumpstransferenergytothewateraskinetic,then
potentialenergy

6
Pumped-HydroEnergyStorage
Energystoredin
thewaterofthe
upperreservoiris
releasedaswater
flowstothelower
reservoir
Potential
energyis
convertedto
kineticenergy
Kineticenergyoffallingwaterturnsaturbine
Turbineturnsagenerator
Generatorconvertsmechanicalenergytoelectrical
energy

7
HistoryofPHES
PHESwas firstintroducedinItalyandSwitzerland
inthe 1890’s
FavorabletopographyintheAlps
Four-unitsystems
◼Turbine
◼Generator
◼Motor
◼Pump

8
HistoryofPHES
FirstPHESplantintheUS:
RockyRiverhydro
plant, NewMilford,CT
Waterfromthe
Housatonic Riverpumped
upinto CandlewoodLake
230feetofhead
6billionft
3
ofwater
Two-unit(binary)system
◼Reversiblepump/turbine–
oneofthefirst
29MWofgenerating
power

9
Pumped-HydroStorageToday
PHESaccountsfor99%ofworldwideenergystorage
Totalpower:~127GW
Totalenergy:~740TWh
Powerofindividualplants:10sofMW–3GW
IntheUS:
~40operationalPHESplants
75%are>500MW–strongeconomiesofscale
Totalpower:~23GW
◼Currentplansforanadditional~6GW
Totalenergy:~220TWh

PHESFundamentals10

11
PHESFundamentals
Twostorage
reservoirs
Upperandlower
Lowerreservoir
may beariveror
even thesea
Separatedbyaheight,ℎ
Thehydraulichead
Assumeℎ≫depthoftheupperreservoir
◼ℎremainsconstantthroughoutcharge/dischargecycle
Upperreservoircanstoreavolumeofwater,V
u

12
PHESFundamentals-Energy
Totalstoredenergy(assumingitisallataheight,h)
Theenergydensity–energyperunitvolume–ofthestoredwateris
therefore

13
PHESFundamentals–HydrostaticPressure
Theenergydensityofthestoredwaterisalsothe
hydrostaticpressureatthelevelofthelower
reservoir
Thisistheenergydensityofthewateratthe
turbine

14
PHESFundamentals-Power
Therateatwhichenergyistransferredtothe
turbine(fromthepump)isthepowerextracted
from(deliveredto)thewater
Thisisthetotalpoweravailableattheturbine
Lessthanthepoweractuallydeliveredto theturbine
(fromthepump),duetoinefficiencies

15
AGeneralizedPowerRelation
Notethatpowerisgivenbytheproductofadriving
potential,oreffort,??????,andaflow,??????

16
AGeneralizedPowerRelation
Alsosimilartoanelectricalsystem

17
Energy&Powervs.Head
Thetotalstoredenergyandavailablepowerare
Bothareproportionaltohead,ℎ
Largeverticalseparationbetweenlowerandupperreservoirs is
desirable
Limitedbytopography
Limitedbyequipment–pumpandturbine
Specificenergyisalsoproportionaltohead:
Asisenergydensity:

18
SpecificEnergy&EnergyDensityvs.Head
MostPHESplantshaveheadintherangeof100–1000m
Using300masarepresentativehead,gives:
Energydensityforh = 300 m
Specificenergyforh = 300 m

19
SpecificEnergy&EnergyDensity
ComparisonofPHESenergydensityandspecificenergy
withotherenergystorage/sources
PHES
h=100m
PHES
h=500m
PHES
h=1000m
Li-ion
Battery
Natural
Gas GasolineUnits
Energy
Density
0.273 1.36 2.73 400 10.1 9,500Wh/L
Specific
Energy
0.273 1.36 2.73 15015,40013,000Wh/kg
Evenathighheads,PHEShasverylowenergydensity
Largereservoirsarerequired

20
PHESApplications
Pumpedhydroplantscansupplylargeamountsof
bothpowerandenergy
Canquicklyrespondtolargeloadvariations
UsesforPHES:
Peakshaving/loadleveling
Helpmeetloadsduringpeakhours
◼Generatingwhilereleasingwaterfromupperreservoir
◼Supplyingexpensiveenergy
Storeenergyduringoff-peakhours
◼Pumpingwatertotheupperreservoir
◼Consuminginexpensiveenergy

21
PHESApplications
Frequencyregulation
Powervariationtotrackshort-termloadvariations
Helpsmaintaingridfrequencyat60Hz(50Hz)
Voltagesupport
Reactivepowerflowcontroltohelpmaintain
desired gridvoltage
◼Varyingthefieldexcitationvoltageofthegenerator/motor

22
PHESApplications
Blackstartcapability
Abilitytostartgeneratingwithoutanexternal
power supply
Bringthegridbackonlineafterablackout
Spinningreserve
Capableofrespondingquickly–withinseconds
to minutes–totheneedforadditionalgeneration

ComponentsofaPHESPlant23

24
ComponentsofaPHESPlant
K. Webb ESE471

25
PHESComponents–Reservoirs
Upperandlower
reservoirsseparatedby
anelevationdifference
Twoconfigurations:
Open-loop:
◼Atleastoneofthe
reservoirsconnectedtoa
sourceofnaturalinflow
◼Naturallake,river,river-fedreservoir,thesea
Closed-loop:
◼Neitherreservoirhasanaturalsourceofinflow
◼Initialfillingandcompensationofleakageandevaporation
providedbygroundwaterwells
◼Lesscommonthanopen-loop

26
PHESComponents–Penstock
Penstock
Conduitforwaterflowing
betweenreservoirsandtothe
pump/generator
Above-groundpipesor below
groundshafts/tunnels
◼5-10mdiameteriscommon
◼Oneplantmayhaveseveralpenstocks
◼Typically,steel-orconcrete-lined,thoughmaybeunlined
Flowvelocityrangeof1–5m/siscommon
Tradeoffbetweencostandefficiencyforagivenflowrate,Q
Largercross-sectionalarea:
◼Slowerflow
◼Lowerloss
◼Highercost

27
PHESComponents
Tailracetunnel
Typically, larger
diameter thanpenstocks
Lowerpressure
Lowerflowrate
Downwardslopefrom
lower reservoirto
pump/turbine
◼Inletheadhelpsprevent
cavitationinpumpingmode
Surgetanks
Accumulatortankstoabsorbhighpressuretransients
during startupandmodechangeover
Maybelocatedonpenstockortailrace
Especiallyimportantforlongertunnels
Hydraulicbypasscapacitors

28
PHESComponents–PowerHouse
Powerhouse
Contains
pump/turbines and
motor/generators
Oftenunderground
Typicallybelowthe
level ofthelower
reservoirto provide
requiredpump inlet
head
Threepossibleconfigurations
◼Binaryset:onepump/turbineandonemotor/generator
◼Ternaryset:onepump,oneturbine,andonemotor/generator
◼Quaternaryset:separatepump,turbine,motor,andgenerator

PowerPlantConfigurations29

30
PowerPlantConfigurations–QuaternarySet
Quaternaryset
Pumpdrivenbyamotor
Generatordrivenbyaturbine
Pumpandturbineare
completelydecoupled
Possiblyseparate
penstocks/tailracetunnels
Mostcommonconfiguration
priorto1920
Highequipment/infrastructure
costs
Highefficiency
◼Pumpandturbinedesignedto optimize
individualperformance

31
PowerPlantConfigurations–TernarySet
Ternaryset
Pump,turbine,and
motor/generatorallon asingle
shaft
◼Pumpandturbinerotate inthe
samedirection
Turbinerigidlycoupledto
the motor/generator
Pumpcoupledtoshaft
witha clutch
Populardesign1920–1960s
Nowadays,usedwhenheadexceeds theusablerangeofa
single-stagepump/turbine
◼High-headturbines(e.g.,Pelton)canbeused
Pumpandturbinedesignscanbeindividuallyoptimized

32
PowerPlantConfigurations–TernarySet
Ternaryset
Generatingmode:
◼Turbinespinsgenerator
◼Pumpdecoupledfromtheshaft
andisolatedwithvalves
Pumpingmode:
◼Motorturnsthepump
◼Turbinespinsinair,isolatedwith
valves
Bothturbineandpump
can operatesimultaneously
Turbinecanbeusedforpumpstartup
◼Bothspininthesamedirection
◼Turbinebringspumpuptospeedandsynchronizedwithgrid,then
shutsdown
◼Changeovertimereduced

33
PowerPlantConfigurations–BinarySet
Binaryset
Singlereversible
pump/turbinecoupledtoa
singlemotor/generator
Mostpopular
configuration formodern
PHES
Lowestcostconfiguration
◼Lessequipment
◼Simplifiedhydraulicpathways
◼Fewervalves,gates,controls,etc.
Lowerefficiencythanforternaryorquaternarysets
◼Pump/turbinerunnerdesignisacompromisebetweenpumpand
turbineperformance

34
PowerPlantConfigurations–BinarySet
Binaryset
Rotationisinopposite
directionsforpumpingand
generating
Shaftand
motor/generator must
changedirections when
changingmodes
◼Slowerchangeoverthanforternaryorquaternaryunits
Pumpstartup:
◼Pump/turbinerunnerdewateredandspinninginair
◼Motorbringspumpuptospeedandinsynchronismwiththe
gridbeforepumpingofwaterbegins

Turbines35

36
Turbines
Hydroturbinedesignselectionbasedon
Head
Flowrate
PHESplantsaretypicallysitedtohavelargehead
Energydensityisproportionaltohead
Typically100sofmeters
ReversibleFrancispump/turbine
MostcommonturbineforPHESapplications
Single-stagepump/turbinesoperatewithheadsupto700m
Forhigherhead:
Multi-stagepump/turbines
TernaryunitswithPeltonturbines

37
TurbineSelection

38
FrancisTurbine–Components
Volutecasing(scrollcasing)
Spiralcasingthat
feeds waterfromthe
penstock totheturbine
runner
 Cross-sectional
area decreases
alongthelengthof
thecasing
◼Constantflowrate
maintainedalongthe
length
Francisturbinecasing–GrandCoulee:

39
FrancisTurbine–Components
Guidevanesandstayvanes
Directwaterflowfromthecasingintotherunner
Stayvanesarefixed
Guidevanes,orwicketgates,areadjustable
◼Openandclosetocontrolflowrate
◼Poweroutputmodulatedbycontrollingflowrate
◼Setfullyopenforpumpingmode
Source:Stahlkocher Source:Stahlkocher

40
FrancisTurbine–Components
Turbinerunner
Reactionturbine
◼Pressureenergyisextractedfrom theflow
◼Pressuredropsasflowpasses throughthe
runner
Flowentersradially
Flowexitsaxially
Typicallyorientedwitha vertical
shaft
Drafttube
Diffuserthatguidesexitingflow tothe
tailrace
Source:VoithSiemensHydroPower

41
High-HeadPHES
Optionsforheadsin excessof
700m:
Two-stageFrancis
pump/turbines
◼Typically,nowicketgatesin two-stage
configuration
◼Nomechanismforvarying generating
power
TernaryunitwithPelton turbine
Two-stagepump/turbine:
Source:Alstom

42
PeltonTurbines
PeltonTurbine
Suitableforheadsupto1000m
Impulseturbine
◼Nozzlesconvertpressureenergytokinetic
energy
Source:Alstom
◼High-velocityjetsimpingeontherunnerat
atmosphericpressure
◼Kineticenergy
transferredtothe
runner
◼Waterexitstheturbine
atlowvelocity
Cannotbeused
for pumping
◼Usedaspartofa
ternaryset
Source:BFLHydroPower

Motor/Generator43

44
Motor/Generator–Fixed-Speed
Pump/turbineshaftconnectstoamotor/generatorunit
Abovetheturbinerunnerintypicalverticalconfiguration
Motor/generatortypedependsPHEScategory:
Fixed-speed pump/turbine
Variable-speedpump/turbine
Fixed-speedpump/turbine
Motor/generatoroperatesatafixedspeedinboth
pumping andgeneratingmodes
Synchronousmotor/generator
◼RotationissynchronouswiththeACgridfrequency
◼Statorwindingsconnecttothree-phaseACatgridfrequency
◼RotorwindingsfedwithDCexcitationcurrentviasliprings

45
Motor/Generator
Variable-speed(adjustable-speed)pump/turbine
Rotationalspeedofmotor/generatorisadjustable
Thepreferredconfigurationforlarge(>100MW)PHES
plants nowadays
Advantagesofvariable-speedplants
Pumpandturbinespeedscanbeindependentlyvaried
to optimizeefficiencyoverrangeofflowrateandhead
Pumpingpowercanbevariedinadditiontogenerating
power

46
PHESforFrequencyRegulation
Frequencyregulation
 Trackingshort-termload
variationstomaintaingrid
frequencyat60Hz(or50Hz)
PHESplantscanprovidefrequency
regulation
Differentforfixed-orvariable-speedplants
Fixed-speedplants
Generatingmode
◼Frequencyregulationprovidedbyrapidlyvaryingpoweroutput
◼Powervariedbyusingwicketgatestomodulateflowrate
◼Sameasinconventionalhydroplants
Pumpingmode
◼Pumpoperatesatratedpoweronly–powerinputcannotbevaried
◼Nofrequencyregulationinpumpingmode

47
FrequencyRegulation–Variable-Speed
Variable-speedplants
Pumpspeedcanbevaried
over somerange,e.g.±10%
Pumppowerisproportional
to pumpspeedcubed
◼For±10%speedvariation,powerisadjustableover±30%
Powervariationinpumpingmodecantrackrapid
load variations
Frequencyregulationcanbeprovidedinboth
modes ofoperation

48
FrequencyRegulation–TernarySets
Fixed-speedternarysets
Generatingmode
◼Wicketgatesinturbinecontrolflowratetovarypower
output
◼Pumpdisconnectedfromshaft
Pumpingmode
◼Hydraulicshortcircuitprovidespowermodulation
◼Pumpandgeneratorbothturnontheshaft
◼Pumpoperatesatfullload
◼Generatoroperatesatvariablepartialload

49
HydraulicShortCircuit
KopsIIPHESplantinAustrianAlps:
Source:VorarlbergerIllvwerkeAG

PHESEfficiency50

51
PHESSystemEfficiency
Round-tripefficiency:
Typicalround-tripefficiencyforPHESplantsintherangeof70%–80%
PHESlossmechanisms
Transformer
Motor/generator
Pump/turbine
Water conduit

52
PHESLosses
Transformers
PumpedhydroplantsconnecttotheACelectricalgrid
◼Transformersstepvoltagebetweenhighvoltageonthegridside
tolowervoltageatthemotor/generator
Transformerlossmechanisms:
◼Windingresistance
◼Leakageflux
◼Hysteresisandeddycurrentsinthecore
◼Magnetizingcurrent–finitecorepermeability
Powerflowsthroughtransformersonthewayinto
the storageplantandagainonthewayout
Typicalloss:~0.5%

53
PHESLosses
Motor/generatorlosses
Electricalresistance
Mechanicalfriction
Typicalloss:~2%
Pump/turbine
Singlerunnerinbinarysets
◼Typically,lowerefficiency,particularlyforfixed-
speed operation–designofbothcompromised
Separaterunnersinternary,quaternarysets
◼Higherefficiency
Typicalloss:~7%-10%

PHESLosses
Penstock
Frictionallossofwaterflowingthroughthe
conduit
◼Majorlossesalongpenstock
◼Minorlossesfrombends,penstockinlet,turbineinlet,etc.
Dependenton
◼Flowvelocity
◼Penstockdiameter
◼Penstocklength
◼Penstocklining–steel,concrete,etc.
Highheadisdesirable,butlongpenstocksarenot
◼Steeperpenstocksreducefrictionallossesforagivenhead
◼Typicallength-to-headratio:4:1–12:1
Typicalloss:~1%

PHESLosses
TypicallossesforPHES:

Pumping-ModeEfficiency
Efficiencyofthepumpingoperationisgivenby

Pumping-ModeEfficiency
Thevolumeofwaterpumpedtotheupperreservoiris

Generating-ModeEfficiency
Efficiencyofthegeneratingoperationisgivenby

Generating-ModeEfficiency
Generatingmodeefficiencyis

PumpingandGeneratingTimes
Duetolosses,charging/dischargingtimes differ,evenforequalgrid-side
powerinput/output
Energyflowsinfromthegridfasterthanitisstoredintheupperreservoir
Energyflowsoutofstoragefasterthanitisdeliveredtothegrid

PumpingandGeneratingTimes
Ratioofgenerationtopumpingtime:
Thatis,theratioofdischargingtochargingtimeisequalto
the round-tripefficiency

RailEnergyStorage62

DisadvantagesofPHES
DisadvantagesofPHES
Environmentalissues
◼Waterusage
◼River/habitatdisruption
Headvariation
◼Pressuredropsasupperreservoirdrains
◼Efficiencymayvarythroughoutcharge/dischargecycle
◼Particularlyanissueforlower-headplantswithsteep,narrowupper
reservoirs
Sitingoptionsarelimited
◼Availablewater
◼Favorable topography
◼Largelandarea
Possiblealternativepotentialenergystorage:
Railenergystorage

RailEnergyStorage
Railenergystorage
Electric-motor-drivenrailcars
Weightsareshuttledupanddownaninclinebetweenupper
and lowerstorageyards
Powerinputdrivesmotorstomoveweightsupthetrack
Regenerative
brakingontheway
downsupplies
powertothegrid
Weightsare
loaded and
unloadedat
storageyards
◼Largequantitiesof
energycanbe
storedwithfew
trains

AdvantagesofRailEnergyStorage
MoresitingoptionsthanforPHES
Openspace
Elevationchange
Noneedforwateror
topographyconduciveto
reservoirs
LowercapitalcostthanPHES
Easilyscalable
Efficient
RTefficiency:78%-86%
Constant
efficiency,
independent ofSoC
Nostandbylosses
Noevaporation/leakage

RailEnergyStorage
Threecategoriesofrailenergystorageplantsproposed
byARES:
Small
◼20–50MW
◼Ancillaryservicesonly
Intermediate
◼50–200MW
◼Ancillaryservices,
integrationof
renewables
Grid-scale
◼200MW–3GW
◼4–16hoursofstorageatfullpower
Tags