SlidePub
Home
Categories
Login
Register
Home
General
lecture 2 - PHES.pdf (energy storage systems)
lecture 2 - PHES.pdf (energy storage systems)
DinaSaad22
55 views
66 slides
May 12, 2024
Slide
1
of 66
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
About This Presentation
Pumped-storage hydroelectricity
Size:
1.67 MB
Language:
en
Added:
May 12, 2024
Slides:
66 pages
Slide Content
Slide 1
EnergyStorageSystems
PUMPED-HYDRO ENERGY
STORAGE
Slide 2
Introduction2
Slide 3
3
PotentialEnergyStorage
Energycanbestoredaspotentialenergy
Consideramass,melevatedtoaheight,ℎ
Itspotentialenergyincreaseis:
E = mgh
Liftingthemassrequiresaninputof
work equalto(atleast)theenergy
increaseof themass
Weputenergyintoliftthemass
Thatenergyisstoredinthemassas
potentialenergy
Slide 4
4
PotentialEnergyStorage
Ifweallowthemasstofallbacktoits
originalheight,wecancapturethe
storedpotentialenergy
Potentialenergyconvertedto
kinetic energyasthemassfalls
Kineticenergycanbecapturedto
perform work
Perhapsconvertedtorotational
energy, andthentoelectricalenergy
Slide 5
5
Pumped-HydroEnergyStorage
Potentialenergy
storagein
elevatedmassis
thebasisfor
pumped-hydro
energystorage
(PHES)
Energyusedto
pumpwaterfrom
alowerreservoirtoanupperreservoir
Electricalenergyinputtomotorsis convertedto
rotational mechanicalenergy
Pumpstransferenergytothewateraskinetic,then
potentialenergy
Slide 6
6
Pumped-HydroEnergyStorage
Energystoredin
thewaterofthe
upperreservoiris
releasedaswater
flowstothelower
reservoir
Potential
energyis
convertedto
kineticenergy
Kineticenergyoffallingwaterturnsaturbine
Turbineturnsagenerator
Generatorconvertsmechanicalenergytoelectrical
energy
Slide 7
7
HistoryofPHES
PHESwas firstintroducedinItalyandSwitzerland
inthe 1890’s
FavorabletopographyintheAlps
Four-unitsystems
◼Turbine
◼Generator
◼Motor
◼Pump
Slide 8
8
HistoryofPHES
FirstPHESplantintheUS:
RockyRiverhydro
plant, NewMilford,CT
Waterfromthe
Housatonic Riverpumped
upinto CandlewoodLake
230feetofhead
6billionft
3
ofwater
Two-unit(binary)system
◼Reversiblepump/turbine–
oneofthefirst
29MWofgenerating
power
Slide 9
9
Pumped-HydroStorageToday
PHESaccountsfor99%ofworldwideenergystorage
Totalpower:~127GW
Totalenergy:~740TWh
Powerofindividualplants:10sofMW–3GW
IntheUS:
~40operationalPHESplants
75%are>500MW–strongeconomiesofscale
Totalpower:~23GW
◼Currentplansforanadditional~6GW
Totalenergy:~220TWh
Slide 10
PHESFundamentals10
Slide 11
11
PHESFundamentals
Twostorage
reservoirs
Upperandlower
Lowerreservoir
may beariveror
even thesea
Separatedbyaheight,ℎ
Thehydraulichead
Assumeℎ≫depthoftheupperreservoir
◼ℎremainsconstantthroughoutcharge/dischargecycle
Upperreservoircanstoreavolumeofwater,V
u
Slide 12
12
PHESFundamentals-Energy
Totalstoredenergy(assumingitisallataheight,h)
Theenergydensity–energyperunitvolume–ofthestoredwateris
therefore
Slide 13
13
PHESFundamentals–HydrostaticPressure
Theenergydensityofthestoredwaterisalsothe
hydrostaticpressureatthelevelofthelower
reservoir
Thisistheenergydensityofthewateratthe
turbine
Slide 14
14
PHESFundamentals-Power
Therateatwhichenergyistransferredtothe
turbine(fromthepump)isthepowerextracted
from(deliveredto)thewater
Thisisthetotalpoweravailableattheturbine
Lessthanthepoweractuallydeliveredto theturbine
(fromthepump),duetoinefficiencies
Slide 15
15
AGeneralizedPowerRelation
Notethatpowerisgivenbytheproductofadriving
potential,oreffort,??????,andaflow,??????
Slide 16
16
AGeneralizedPowerRelation
Alsosimilartoanelectricalsystem
Slide 17
17
Energy&Powervs.Head
Thetotalstoredenergyandavailablepowerare
Bothareproportionaltohead,ℎ
Largeverticalseparationbetweenlowerandupperreservoirs is
desirable
Limitedbytopography
Limitedbyequipment–pumpandturbine
Specificenergyisalsoproportionaltohead:
Asisenergydensity:
Slide 18
18
SpecificEnergy&EnergyDensityvs.Head
MostPHESplantshaveheadintherangeof100–1000m
Using300masarepresentativehead,gives:
Energydensityforh = 300 m
Specificenergyforh = 300 m
Slide 19
19
SpecificEnergy&EnergyDensity
ComparisonofPHESenergydensityandspecificenergy
withotherenergystorage/sources
PHES
h=100m
PHES
h=500m
PHES
h=1000m
Li-ion
Battery
Natural
Gas GasolineUnits
Energy
Density
0.273 1.36 2.73 400 10.1 9,500Wh/L
Specific
Energy
0.273 1.36 2.73 15015,40013,000Wh/kg
Evenathighheads,PHEShasverylowenergydensity
Largereservoirsarerequired
Slide 20
20
PHESApplications
Pumpedhydroplantscansupplylargeamountsof
bothpowerandenergy
Canquicklyrespondtolargeloadvariations
UsesforPHES:
Peakshaving/loadleveling
Helpmeetloadsduringpeakhours
◼Generatingwhilereleasingwaterfromupperreservoir
◼Supplyingexpensiveenergy
Storeenergyduringoff-peakhours
◼Pumpingwatertotheupperreservoir
◼Consuminginexpensiveenergy
Slide 21
21
PHESApplications
Frequencyregulation
Powervariationtotrackshort-termloadvariations
Helpsmaintaingridfrequencyat60Hz(50Hz)
Voltagesupport
Reactivepowerflowcontroltohelpmaintain
desired gridvoltage
◼Varyingthefieldexcitationvoltageofthegenerator/motor
Slide 22
22
PHESApplications
Blackstartcapability
Abilitytostartgeneratingwithoutanexternal
power supply
Bringthegridbackonlineafterablackout
Spinningreserve
Capableofrespondingquickly–withinseconds
to minutes–totheneedforadditionalgeneration
Slide 23
ComponentsofaPHESPlant23
Slide 24
24
ComponentsofaPHESPlant
K. Webb ESE471
Slide 25
25
PHESComponents–Reservoirs
Upperandlower
reservoirsseparatedby
anelevationdifference
Twoconfigurations:
Open-loop:
◼Atleastoneofthe
reservoirsconnectedtoa
sourceofnaturalinflow
◼Naturallake,river,river-fedreservoir,thesea
Closed-loop:
◼Neitherreservoirhasanaturalsourceofinflow
◼Initialfillingandcompensationofleakageandevaporation
providedbygroundwaterwells
◼Lesscommonthanopen-loop
Slide 26
26
PHESComponents–Penstock
Penstock
Conduitforwaterflowing
betweenreservoirsandtothe
pump/generator
Above-groundpipesor below
groundshafts/tunnels
◼5-10mdiameteriscommon
◼Oneplantmayhaveseveralpenstocks
◼Typically,steel-orconcrete-lined,thoughmaybeunlined
Flowvelocityrangeof1–5m/siscommon
Tradeoffbetweencostandefficiencyforagivenflowrate,Q
Largercross-sectionalarea:
◼Slowerflow
◼Lowerloss
◼Highercost
Slide 27
27
PHESComponents
Tailracetunnel
Typically, larger
diameter thanpenstocks
Lowerpressure
Lowerflowrate
Downwardslopefrom
lower reservoirto
pump/turbine
◼Inletheadhelpsprevent
cavitationinpumpingmode
Surgetanks
Accumulatortankstoabsorbhighpressuretransients
during startupandmodechangeover
Maybelocatedonpenstockortailrace
Especiallyimportantforlongertunnels
Hydraulicbypasscapacitors
Slide 28
28
PHESComponents–PowerHouse
Powerhouse
Contains
pump/turbines and
motor/generators
Oftenunderground
Typicallybelowthe
level ofthelower
reservoirto provide
requiredpump inlet
head
Threepossibleconfigurations
◼Binaryset:onepump/turbineandonemotor/generator
◼Ternaryset:onepump,oneturbine,andonemotor/generator
◼Quaternaryset:separatepump,turbine,motor,andgenerator
Slide 29
PowerPlantConfigurations29
Slide 30
30
PowerPlantConfigurations–QuaternarySet
Quaternaryset
Pumpdrivenbyamotor
Generatordrivenbyaturbine
Pumpandturbineare
completelydecoupled
Possiblyseparate
penstocks/tailracetunnels
Mostcommonconfiguration
priorto1920
Highequipment/infrastructure
costs
Highefficiency
◼Pumpandturbinedesignedto optimize
individualperformance
Slide 31
31
PowerPlantConfigurations–TernarySet
Ternaryset
Pump,turbine,and
motor/generatorallon asingle
shaft
◼Pumpandturbinerotate inthe
samedirection
Turbinerigidlycoupledto
the motor/generator
Pumpcoupledtoshaft
witha clutch
Populardesign1920–1960s
Nowadays,usedwhenheadexceeds theusablerangeofa
single-stagepump/turbine
◼High-headturbines(e.g.,Pelton)canbeused
Pumpandturbinedesignscanbeindividuallyoptimized
Slide 32
32
PowerPlantConfigurations–TernarySet
Ternaryset
Generatingmode:
◼Turbinespinsgenerator
◼Pumpdecoupledfromtheshaft
andisolatedwithvalves
Pumpingmode:
◼Motorturnsthepump
◼Turbinespinsinair,isolatedwith
valves
Bothturbineandpump
can operatesimultaneously
Turbinecanbeusedforpumpstartup
◼Bothspininthesamedirection
◼Turbinebringspumpuptospeedandsynchronizedwithgrid,then
shutsdown
◼Changeovertimereduced
Slide 33
33
PowerPlantConfigurations–BinarySet
Binaryset
Singlereversible
pump/turbinecoupledtoa
singlemotor/generator
Mostpopular
configuration formodern
PHES
Lowestcostconfiguration
◼Lessequipment
◼Simplifiedhydraulicpathways
◼Fewervalves,gates,controls,etc.
Lowerefficiencythanforternaryorquaternarysets
◼Pump/turbinerunnerdesignisacompromisebetweenpumpand
turbineperformance
Slide 34
34
PowerPlantConfigurations–BinarySet
Binaryset
Rotationisinopposite
directionsforpumpingand
generating
Shaftand
motor/generator must
changedirections when
changingmodes
◼Slowerchangeoverthanforternaryorquaternaryunits
Pumpstartup:
◼Pump/turbinerunnerdewateredandspinninginair
◼Motorbringspumpuptospeedandinsynchronismwiththe
gridbeforepumpingofwaterbegins
Slide 35
Turbines35
Slide 36
36
Turbines
Hydroturbinedesignselectionbasedon
Head
Flowrate
PHESplantsaretypicallysitedtohavelargehead
Energydensityisproportionaltohead
Typically100sofmeters
ReversibleFrancispump/turbine
MostcommonturbineforPHESapplications
Single-stagepump/turbinesoperatewithheadsupto700m
Forhigherhead:
Multi-stagepump/turbines
TernaryunitswithPeltonturbines
Slide 37
37
TurbineSelection
Slide 38
38
FrancisTurbine–Components
Volutecasing(scrollcasing)
Spiralcasingthat
feeds waterfromthe
penstock totheturbine
runner
Cross-sectional
area decreases
alongthelengthof
thecasing
◼Constantflowrate
maintainedalongthe
length
Francisturbinecasing–GrandCoulee:
Slide 39
39
FrancisTurbine–Components
Guidevanesandstayvanes
Directwaterflowfromthecasingintotherunner
Stayvanesarefixed
Guidevanes,orwicketgates,areadjustable
◼Openandclosetocontrolflowrate
◼Poweroutputmodulatedbycontrollingflowrate
◼Setfullyopenforpumpingmode
Source:Stahlkocher Source:Stahlkocher
Slide 40
40
FrancisTurbine–Components
Turbinerunner
Reactionturbine
◼Pressureenergyisextractedfrom theflow
◼Pressuredropsasflowpasses throughthe
runner
Flowentersradially
Flowexitsaxially
Typicallyorientedwitha vertical
shaft
Drafttube
Diffuserthatguidesexitingflow tothe
tailrace
Source:VoithSiemensHydroPower
Slide 41
41
High-HeadPHES
Optionsforheadsin excessof
700m:
Two-stageFrancis
pump/turbines
◼Typically,nowicketgatesin two-stage
configuration
◼Nomechanismforvarying generating
power
TernaryunitwithPelton turbine
Two-stagepump/turbine:
Source:Alstom
Slide 42
42
PeltonTurbines
PeltonTurbine
Suitableforheadsupto1000m
Impulseturbine
◼Nozzlesconvertpressureenergytokinetic
energy
Source:Alstom
◼High-velocityjetsimpingeontherunnerat
atmosphericpressure
◼Kineticenergy
transferredtothe
runner
◼Waterexitstheturbine
atlowvelocity
Cannotbeused
for pumping
◼Usedaspartofa
ternaryset
Source:BFLHydroPower
Slide 43
Motor/Generator43
Slide 44
44
Motor/Generator–Fixed-Speed
Pump/turbineshaftconnectstoamotor/generatorunit
Abovetheturbinerunnerintypicalverticalconfiguration
Motor/generatortypedependsPHEScategory:
Fixed-speed pump/turbine
Variable-speedpump/turbine
Fixed-speedpump/turbine
Motor/generatoroperatesatafixedspeedinboth
pumping andgeneratingmodes
Synchronousmotor/generator
◼RotationissynchronouswiththeACgridfrequency
◼Statorwindingsconnecttothree-phaseACatgridfrequency
◼RotorwindingsfedwithDCexcitationcurrentviasliprings
Slide 45
45
Motor/Generator
Variable-speed(adjustable-speed)pump/turbine
Rotationalspeedofmotor/generatorisadjustable
Thepreferredconfigurationforlarge(>100MW)PHES
plants nowadays
Advantagesofvariable-speedplants
Pumpandturbinespeedscanbeindependentlyvaried
to optimizeefficiencyoverrangeofflowrateandhead
Pumpingpowercanbevariedinadditiontogenerating
power
Slide 46
46
PHESforFrequencyRegulation
Frequencyregulation
Trackingshort-termload
variationstomaintaingrid
frequencyat60Hz(or50Hz)
PHESplantscanprovidefrequency
regulation
Differentforfixed-orvariable-speedplants
Fixed-speedplants
Generatingmode
◼Frequencyregulationprovidedbyrapidlyvaryingpoweroutput
◼Powervariedbyusingwicketgatestomodulateflowrate
◼Sameasinconventionalhydroplants
Pumpingmode
◼Pumpoperatesatratedpoweronly–powerinputcannotbevaried
◼Nofrequencyregulationinpumpingmode
Slide 47
47
FrequencyRegulation–Variable-Speed
Variable-speedplants
Pumpspeedcanbevaried
over somerange,e.g.±10%
Pumppowerisproportional
to pumpspeedcubed
◼For±10%speedvariation,powerisadjustableover±30%
Powervariationinpumpingmodecantrackrapid
load variations
Frequencyregulationcanbeprovidedinboth
modes ofoperation
Slide 48
48
FrequencyRegulation–TernarySets
Fixed-speedternarysets
Generatingmode
◼Wicketgatesinturbinecontrolflowratetovarypower
output
◼Pumpdisconnectedfromshaft
Pumpingmode
◼Hydraulicshortcircuitprovidespowermodulation
◼Pumpandgeneratorbothturnontheshaft
◼Pumpoperatesatfullload
◼Generatoroperatesatvariablepartialload
Slide 49
49
HydraulicShortCircuit
KopsIIPHESplantinAustrianAlps:
Source:VorarlbergerIllvwerkeAG
Slide 50
PHESEfficiency50
Slide 51
51
PHESSystemEfficiency
Round-tripefficiency:
Typicalround-tripefficiencyforPHESplantsintherangeof70%–80%
PHESlossmechanisms
Transformer
Motor/generator
Pump/turbine
Water conduit
Slide 52
52
PHESLosses
Transformers
PumpedhydroplantsconnecttotheACelectricalgrid
◼Transformersstepvoltagebetweenhighvoltageonthegridside
tolowervoltageatthemotor/generator
Transformerlossmechanisms:
◼Windingresistance
◼Leakageflux
◼Hysteresisandeddycurrentsinthecore
◼Magnetizingcurrent–finitecorepermeability
Powerflowsthroughtransformersonthewayinto
the storageplantandagainonthewayout
Typicalloss:~0.5%
Slide 53
53
PHESLosses
Motor/generatorlosses
Electricalresistance
Mechanicalfriction
Typicalloss:~2%
Pump/turbine
Singlerunnerinbinarysets
◼Typically,lowerefficiency,particularlyforfixed-
speed operation–designofbothcompromised
Separaterunnersinternary,quaternarysets
◼Higherefficiency
Typicalloss:~7%-10%
Slide 54
PHESLosses
Penstock
Frictionallossofwaterflowingthroughthe
conduit
◼Majorlossesalongpenstock
◼Minorlossesfrombends,penstockinlet,turbineinlet,etc.
Dependenton
◼Flowvelocity
◼Penstockdiameter
◼Penstocklength
◼Penstocklining–steel,concrete,etc.
Highheadisdesirable,butlongpenstocksarenot
◼Steeperpenstocksreducefrictionallossesforagivenhead
◼Typicallength-to-headratio:4:1–12:1
Typicalloss:~1%
Slide 55
PHESLosses
TypicallossesforPHES:
Slide 56
Pumping-ModeEfficiency
Efficiencyofthepumpingoperationisgivenby
Slide 57
Pumping-ModeEfficiency
Thevolumeofwaterpumpedtotheupperreservoiris
Slide 58
Generating-ModeEfficiency
Efficiencyofthegeneratingoperationisgivenby
Slide 59
Generating-ModeEfficiency
Generatingmodeefficiencyis
Slide 60
PumpingandGeneratingTimes
Duetolosses,charging/dischargingtimes differ,evenforequalgrid-side
powerinput/output
Energyflowsinfromthegridfasterthanitisstoredintheupperreservoir
Energyflowsoutofstoragefasterthanitisdeliveredtothegrid
Slide 61
PumpingandGeneratingTimes
Ratioofgenerationtopumpingtime:
Thatis,theratioofdischargingtochargingtimeisequalto
the round-tripefficiency
Slide 62
RailEnergyStorage62
Slide 63
DisadvantagesofPHES
DisadvantagesofPHES
Environmentalissues
◼Waterusage
◼River/habitatdisruption
Headvariation
◼Pressuredropsasupperreservoirdrains
◼Efficiencymayvarythroughoutcharge/dischargecycle
◼Particularlyanissueforlower-headplantswithsteep,narrowupper
reservoirs
Sitingoptionsarelimited
◼Availablewater
◼Favorable topography
◼Largelandarea
Possiblealternativepotentialenergystorage:
Railenergystorage
Slide 64
RailEnergyStorage
Railenergystorage
Electric-motor-drivenrailcars
Weightsareshuttledupanddownaninclinebetweenupper
and lowerstorageyards
Powerinputdrivesmotorstomoveweightsupthetrack
Regenerative
brakingontheway
downsupplies
powertothegrid
Weightsare
loaded and
unloadedat
storageyards
◼Largequantitiesof
energycanbe
storedwithfew
trains
Slide 65
AdvantagesofRailEnergyStorage
MoresitingoptionsthanforPHES
Openspace
Elevationchange
Noneedforwateror
topographyconduciveto
reservoirs
LowercapitalcostthanPHES
Easilyscalable
Efficient
RTefficiency:78%-86%
Constant
efficiency,
independent ofSoC
Nostandbylosses
Noevaporation/leakage
Slide 66
RailEnergyStorage
Threecategoriesofrailenergystorageplantsproposed
byARES:
Small
◼20–50MW
◼Ancillaryservicesonly
Intermediate
◼50–200MW
◼Ancillaryservices,
integrationof
renewables
Grid-scale
◼200MW–3GW
◼4–16hoursofstorageatfullpower
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
55
Slides
66
Age
568 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
30 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
32 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
30 views
14
Fertility awareness methods for women in the society
Isaiah47
29 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
26 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
28 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-66)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better