Lecture-4- mechanical vibrations, Mohamed salem.pdf

DinaSaad22 4 views 19 slides Sep 14, 2025
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Vibration course for mechanical engineering by Dr. Mohamed Sameh


Slide Content

Dr. Mohamed Sameh Salem
Contact Info:-
Email: [email protected]
Mobile: 0545350311
1Lecture (4)
Mechanical Vibrations
ME 242
Dr. Mohamed S. Salem
ةعمجملا ةعماج
ةسدنهلا ةيلك
ةيعانصلا و ةيكيناكيملا ةسدنهلا مسق

TypesofVibratingSystem
Force
ForcedVib.Sys.
spring
spring
Damper
Mass
Outof Scope
FreeVib.Sys.
FreeDampedVib.Sys.
1.ForcedundampedVib. Sys.
2.ForceddampedVib. Sys.

FreeVibrationSystem
Freevibration:
meansthatthemassissetintomotionduetoinitialdisturbancewithno
externallyappliedforceotherthanthespringforce,damperforce,or
gravitationalforce.

FreeVibrationofanUndampedSystem
•Selectasuitablecoordinatetodescribethepositionofthemassorrigidbodyinthesystem.
•Determinethestaticequilibriumconfigurationofthesystemandmeasurethe
displacementofthemassorrigidbodyfromitsstaticequilibriumposition.
•Drawthefree-bodydiagramofthemassorrigidbodywhenapositivedisplacementand
velocityaregiventoit.Indicatealltheactiveandreactiveforcesactingonthemassorrigid
body.
•ApplyNewton’ssecondlawofmotiontothemassorrigidbodyshownbytheFreebody
diagram.

FreeVibrationofanUndampedSystem
•Newton’sSecondLawofMotion
•PrincipleofConservationofEnergy
•D’AlembertsPrinciple
•PrincipleofVirtualDisplacements.

•Tostudythesystemdynamics,atanytime(t),
weneedtoknowthefollowing:
1.Thedisplacement(x)
2.Thevelocity(x
o)
3.Theacceleration(x
oo)
??????

=
�??????
��
, ??????
∘∘
=
�??????

��
Didweneeddatafromthestaticstateofthesystem?
EquationofMotionofaSpring-MassSystem in
VerticalPosition(Newton’s2
nd
Law)

Equation of Motion
Equation of Motion
Newton’s 2
nd
Law Energy Method
Natural frequency, ω
n
Damping Ratio, ξ

•AtBalance:(Static)
Σ????????????����=??????
•FreebodydiagramAtBalance:
+??????.??????−????????????=??????
??????.??????=????????????
??????=
??????.??????
??????
??????.??????
EquationofMotionofaSpring-MassSystem in
VerticalPosition(Newton’s2
nd
Law)

•Atdisplacement(x):(dynamicinitiation)
Σ????????????����=????????????
°°
•FreebodydiagramAtmotionstart: ??????(??????+??????)
+??????.??????− ????????????+??????=??????.??????
°°
??????=
??????.??????
??????
+??????.??????−??????
??????.??????
??????
− ??????.??????=??????.??????
°°
−??????.??????=??????.??????
°°
??????.??????
°°
+ ??????.??????=??????
Fromstaticstate
differentialequationofMotion
EquationofMotionofaSpring-MassSystem in
VerticalPosition(Newton’s2
nd
Law)

•Formostoffreevibrationsystems,wecanneglectbothofwightforceandstaticdeflection
force.
Σ????????????����=????????????
°°
−??????.??????=??????.??????
°°
??????.??????
°°
+??????.??????=??????
differentialequationofMotion
EquationofMotionofaSpring-MassSystem in
VerticalPosition(Newton’s2
nd
Law)

Energy Method
Conditions
•Total energy is conservative (E = constant)
•Zero energy addition
•Zero energy loss

EquationofMotionofaSpring-MassSystem in
Vertical Position (Conservation of Energy)
1
2
�=�??????
2
1
2
�=�??????
°
2
??????
??????�
(�+�)=0
PrincipleofConservationofEnergy
�+�=??????����??????��
KineticEnergy
potentialEnergy
°
21
2
1
�??????+�??????=??????����??????��
2 2
°°
�.??????+�.??????=0

Notethefollowingaspectofthespring-masssystem:
�??????=
�
�
=
Whenthemassvibratesinaverticaldirection,wecancomputethenaturalfrequency
andtheperiodofvibrationbysimplymeasuringthestaticdeflection.Wedon’tneedto
knowthespringstiffnesskandthemassm.
??????
??????��
��
??????�??????
�= =
????????????
��

Example 1
Derive the equation of motion for the system shown below and find the
natural frequency.
෍??????=�ሷ??????=−
13
5
�??????
�ሷ??????+
13
5
�??????=0
ሷ??????+
13
5
�
�
??????=0 ??????
�=
13
5
�
�
Solution

Example 2
↺෍??????
�=??????
�
ሷ??????
−�??????��??????�??????=��
2ሷ??????
�ሷ??????+?????? �??????�??????=0.0
ሷ??????+
??????
�
??????=0.0
The +ve direction is in the direction of the angle
θ. Assume that sinθ=θ, then the linear form of
the EoM is shown. Note that ሷ?????? and ?????? are
functions of time (i.e., ሷ?????? (�) and ??????�)
Derive the equation of motion for the system shown below and find the
natural frequency if m=10 kg and k=1000 N/m. the rod is massless
When??????isverysmall,thensin??????=??????
ForLumpedMass: ?????? = ��
2

Example 3
Use the energy method to determine the equation of motion of the simple pendulum
(the rod l is assumed massless) shown in the figure

Example 3

Dr. Mohamed Sameh Salem
Associate professor, Mechanical Power Engineering
Tel: 0545350311