lecture conditional statements .ppt

GPCSIKAR 26 views 17 slides Jul 07, 2024
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

conditional statements


Slide Content

Lesson 2-1 Conditional
Statements
1
Lesson 2-1
Conditional
Statements

Lesson 2-1 Conditional
Statements
2
Conditional Statement
Definition:A conditional statement is a statement that
can be written in if-then form.
“If _____________, then ______________.”
Example:Ifyour feet smell and your nose runs, then
you're built upside down.
Continued……

Lesson 2-1 Conditional
Statements
3
Conditional Statement -continued
Conditional Statements have two parts:
The hypothesisis the part of a conditional statement that follows
“if”(when written in if-then form.)
The conclusionis the part of an if-then statement that follows
“then”(when written in if-then form.)
The hypothesis is the given information, or the condition.
The conclusion is the result of the given information.

Lesson 2-1 Conditional
Statements
4
Conditional statements can be written in “if-then”form to
emphasize which part is the hypothesis and which is the
conclusion.
Writing Conditional Statements
Hint: Turn the subject into the hypothesis.
Example 1:Vertical angles are congruent.can be written as...
Iftwo angles are vertical, thenthey are congruent.
Conditional
Statement:
Example 2:Seals swim. can be written as...
Conditional
Statement:Ifan animal is a seal, thenit swims.

Lesson 2-1 Conditional
Statements
5
If …Thenvs. Implies
Two angles are verticalimplies they are congruent.
Another way of writing an if-then statement is using
the word implies.
Iftwo angles are vertical, thenthey are congruent.

Lesson 2-1 Conditional
Statements
6
Conditional Statements can be true or false:
A conditional statement is false only whenthe hypothesis is true,
but the conclusion is false.
A counterexampleis an example used to show that a
statement is not always true and therefore false.
If you live in Virginia, then you live in Richmond.Statement:
Counterexample:I live in Virginia, BUTI live in Glen Allen.
Is there a counterexample?
Therefore()the statement is false.
Yes !!!

Lesson 2-1 Conditional
Statements
7
Symbolic Logic
Symbols can be used to modify or connect statements.
Symbols for Hypothesis and Conclusion:
Hypothesisis represented by “p”.
Conclusionis represented by “q”.
if p, then q
or
pimplies q
Continued…..

Lesson 2-1 Conditional
Statements
8
Symbolic Logic -continued
if p, then q
or
p implies q
is used to representp q
Example:
p: a number is prime
q: a number has exactly two divisors
If a number is prime,then it has exactly two divisors.pq:
Continued…..

Lesson 2-1 Conditional
Statements
9
is used to represent the word“not”~
Symbolic Logic -continued
Example 1:p: the angle is obtuse
The angle is not obtuse
~p means that the angle could be acute, right, or straight.
~p:
Note:
Example 2:p: I am not happy
~p: I am happy
~p took the “not” out-it would have been a double negative (not not)

Lesson 2-1 Conditional
Statements
10
is used to represent the word
Symbolic Logic -continued
“and”
Example:
p:a number is even
q: a number is divisible by 3
A number is even and it is divisible by 3.
i.e. 6,12,18,24,30,36,42...
pq:

Lesson 2-1 Conditional
Statements
11
is used to represent the word
Symbolic Logic-continued
“or”
Example:
p: a number is even
q: a number is divisible by 3
pq: A number is even or it is divisible by 3.
i.e.2,3,4,6,8,9,10,12,14,15,...

Lesson 2-1 Conditional
Statements
12
is used to represent the word“therefore”
Symbolic Logic -continued

Example:Therefore, the statement is false.
the statement is false

Lesson 2-1 Conditional
Statements
13
Forms of Conditional Statements
Converse:Switch the hypothesis and conclusion (q p)
pqIftwo angles are vertical, thenthey are congruent.
qpIftwo angles are congruent, thenthey are vertical.
Continued…..

Lesson 2-1 Conditional
Statements
14
Forms of Conditional Statements
Inverse:State the opposite of both the hypothesis and conclusion.
(~p~q)
pq :Iftwo angles are vertical, thenthey are congruent.
~p~q:Iftwo angles are notvertical, thenthey are not
congruent.

Lesson 2-1 Conditional
Statements
15
Forms of Conditional Statements
Contrapositive: Switch the hypothesis and conclusion and
state their opposites. (~q~p)
pq: Iftwo angles are vertical, thenthey are congruent.
~q~p:Iftwo angles are notcongruent, thenthey are not
vertical.

Lesson 2-1 Conditional
Statements
16
Forms of Conditional Statements
Contrapositives are logically equivalent to the
original conditional statement.
If pq is true, then qp is true.
If pq is false, then qp is false.

Lesson 2-1 Conditional
Statements
17
Biconditional
When a conditional statement and its converse are both true,
the two statements may be combined.
Use the phrase if and only if(sometimes abbreviated: iff)
Statement:If an angle is right then it has a measure of 90.
Converse:If an angle measures 90, then it is a right angle.
Biconditional:An angle is right if and only if it measures 90.
Tags