Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)

leingang 3,386 views 101 slides Apr 05, 2011
Slide 1
Slide 1 of 101
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101

About This Presentation

L'Hôpital's Rule allows us to resolve limits of indeterminate form: 0/0, infinity/infinity, infinity-infinity, 0^0, 1^infinity, and infinity^0


Slide Content

.
.
Sec?on3.7
IndeterminateformsandlHôpital’s
Rule
V63.0121.011: Calculus I
Professor Ma?hew Leingang
New York University
March 30, 2011

Announcements
IMidterm has been
returned. Please see FAQ
on Blackboard (under
”Exams and Quizzes”)
IQuiz 3 this week in
recita?on on Sec?on 2.6,
2.8, 3.1, 3.2

Objectives
IKnow when a limit is of
indeterminate form:
Iindeterminate quo?ents:
0=0,1=1
Iindeterminate products:
0B u
Iindeterminate
differences:1 1
Iindeterminate powers:
0
0
,1
0
, and 1
1
IResolve limits in
indeterminate form

Recall
Recall the limit laws from Chapter 2.
ILimit of a sum is the sum of the limits
ILimit of a difference is the difference of the limits
ILimit of a product is the product of the limits
ILimit of a quo?ent is the quo?ent of the limits ... whoops! This
is true as long as you don’t try to divide by zero.

Recall
Recall the limit laws from Chapter 2.
ILimit of a sum is the sum of the limits
ILimit of a difference is the difference of the limits
ILimit of a product is the product of the limits
ILimit of a quo?ent is the quo?ent of the limits ... whoops! This
is true as long as you don’t try to divide by zero.

Recall
Recall the limit laws from Chapter 2.
ILimit of a sum is the sum of the limits
ILimit of a difference is the difference of the limits
ILimit of a product is the product of the limits
ILimit of a quo?ent is the quo?ent of the limits ... whoops! This
is true as long as you don’t try to divide by zero.

Recall
Recall the limit laws from Chapter 2.
ILimit of a sum is the sum of the limits
ILimit of a difference is the difference of the limits
ILimit of a product is the product of the limits
ILimit of a quo?ent is the quo?ent of the limits ... whoops! This
is true as long as you don’t try to divide by zero.

Moreaboutdividinglimits
IWe know dividing by zero is bad.
IMost of the ?me, if an expression’s numerator approaches a
finite nonzero number and denominator approaches zero, the
quo?ent has an infinite. For example:
lim
x!0
+
1
x
= +1 lim
x!0

cosx
x
3
=u

Why1=0̸=1
Consider the func?onf(x) =
1
1
x
sinx
:
.
.
x
.
y
Then lim
x!1
f(x)is of the form 1=0, but the limit does not exist and is
not infinite.
Even less predictable: when numerator and denominator both go to
zero.

Why1=0̸=1
Consider the func?onf(x) =
1
1
x
sinx
:
.
.
x
.
y
Then lim
x!1
f(x)is of the form 1=0, but the limit does not exist and is
not infinite.
Even less predictable: when numerator and denominator both go to
zero.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

Experimentswithfunnylimits
Ilim
x!0
sin
2
x
x
=0
Ilim
x!0
x
sin
2
x
does not exist
Ilim
x!0
sin
2
x
sin(x
2
)
=1
Ilim
x!0
sin3x
sinx
=3
.
All of these are of the form
0
0
, and since we can get different
answers in different cases, we say this form isindeterminate.

LanguageNote
It depends on what the meaning of the word “is” is
IBe careful with the language here. We
arenotsaying that the limit in each
case “is”
0
0
, and therefore nonexistent
because this expression is undefined.
IThe limitis of the form
0
0
, which means
we cannot evaluate it with our limit
laws.

Indeterminate forms are like Tug Of War
Which side wins depends on which side is stronger.

Outline
L’Hôpital’s Rule
Rela?ve Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers

TheLinearCase
Ques?on
Iffandgare lines andf(a) =g(a) =0, what is lim
x!a
f(x)
g(x)
?
Solu?on
The func?ons f and g can be wri?en in the form
f(x) =m1(xa) g(x) =m2(xa)
So
f(x)
g(x)
=
m1
m2

TheLinearCase
Ques?on
Iffandgare lines andf(a) =g(a) =0, what is lim
x!a
f(x)
g(x)
?
Solu?on
The func?ons f and g can be wri?en in the form
f(x) =m1(xa) g(x) =m2(xa)
So
f(x)
g(x)
=
m1
m2

TheLinearCase,Illustrated
.
. x.
y
.
y=f(x)
.
y=g(x)
..
a
..
x
.
f(x)
.
g(x)
f(x)
g(x)
=
f(x)f(a)
g(x)g(a)
=
(f(x)f(a))=(xa)
(g(x)g(a))=(xa)
=
m1
m2

Whatthen?
IBut what if the func?ons aren’t linear?
ICan we approximate a func?on near a point with a linear
func?on?
IWhat would be the slope of that linear func?on?
The
deriva?ve!

Whatthen?
IBut what if the func?ons aren’t linear?
ICan we approximate a func?on near a point with a linear
func?on?
IWhat would be the slope of that linear func?on?
The
deriva?ve!

Whatthen?
IBut what if the func?ons aren’t linear?
ICan we approximate a func?on near a point with a linear
func?on?
IWhat would be the slope of that linear func?on?The
deriva?ve!

Whatthen?
IBut what if the func?ons aren’t linear?
ICan we approximate a func?on near a point with a linear
func?on?
IWhat would be the slope of that linear func?on?The
deriva?ve!

TheoremoftheDay
Theorem (L’Hopital’s Rule)
Suppose f and g are differen?able func?ons and g

(x)̸=0near a
(except possibly at a). Suppose that
lim
x!a
f(x) =0 and lim
x!a
g(x) =0
orlim
x!a
f(x) =1 and lim
x!a
g(x) =1
Then
lim
x!a
f(x)
g(x)
=lim
x!a
f

(x)
g

(x)
;
if the limit on the right-hand side is finite,1, oru.

MeettheMathematician
Iwanted to be a military man, but
poor eyesight forced him into
math
Idid some math on his own
(solved the “brachistocrone
problem”)
Ipaid a s?pend to Johann
Bernoulli, who proved this
theorem and named it aLer him!
Guillaume François Antoine,
Marquis de L’Hôpital
(French, 1661–1704)

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
x
H
=lim
x!0
2sinx
.
.
sinx!0
cosx
1
=0

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
x
H
=lim
x!0
2sinx
.
.
sinx!0
cosx
1
=0

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
x
H
=lim
x!0
2sinx
.
.
sinx!0
cosx
1
=0

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
x
H
=lim
x!0
2sinx
.
.
sinx!0
cosx
1
=0

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin
2
x
.
.
numerator!0
sinx
2
.
.
denominator!0
H
=lim
x!0
RR2sinxcosx
.
.
numerator!0
(cosx
2
)(RR2x
.
.
denominator!0
)
H
=lim
x!0
cos
2
xsin
2
x
.
.
numerator!1
cosx
2
2x
2
sin(x
2
)
.
.
denominator!1
=1

Revisitingthepreviousexamples
Example
lim
x!0
sin3x
sinx
H
=lim
x!0
3cos3x
cosx
=3:

Revisitingthepreviousexamples
Example
lim
x!0
sin3x
sinx
H
=lim
x!0
3cos3x
cosx
=3:

AnotherExample
Example
Find
lim
x!0
x
cosx
Solu?on
The limit of the denominator is1, not0, soL’Hôpital’s rule does not
apply. The limit is0.

BewareofRedHerrings
Example
Find
lim
x!0
x
cosx
Solu?on
The limit of the denominator is1, not0, soL’Hôpital’s rule does not
apply. The limit is0.

Outline
L’Hôpital’s Rule
Rela?ve Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers

LimitsofRationalFunctions
revisited
Example
Find lim
x!1
5x
2
+3x1
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
3x
2
+7x+27
H
=lim
x!1
10x+3
6x+7
H
=lim
x!1
10
6
=
5
3

LimitsofRationalFunctions
revisited
Example
Find lim
x!1
5x
2
+3x1
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
3x
2
+7x+27
H
=lim
x!1
10x+3
6x+7
H
=lim
x!1
10
6
=
5
3

LimitsofRationalFunctions
revisited
Example
Find lim
x!1
5x
2
+3x1
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
3x
2
+7x+27
H
=lim
x!1
10x+3
6x+7
H
=lim
x!1
10
6
=
5
3

LimitsofRationalFunctions
revisited
Example
Find lim
x!1
5x
2
+3x1
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
3x
2
+7x+27
H
=lim
x!1
10x+3
6x+7
H
=lim
x!1
10
6
=
5
3

LimitsofRationalFunctions
revisited
Example
Find lim
x!1
5x
2
+3x1
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
3x
2
+7x+27
H
=lim
x!1
10x+3
6x+7
H
=lim
x!1
10
6
=
5
3

LimitsofRationalFunctions
revisitedII
Example
Find lim
x!1
5x
2
+3x1
7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
7x+27
H
=lim
x!1
10x+3
7
=1

LimitsofRationalFunctions
revisitedII
Example
Find lim
x!1
5x
2
+3x1
7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
7x+27
H
=lim
x!1
10x+3
7
=1

LimitsofRationalFunctions
revisitedII
Example
Find lim
x!1
5x
2
+3x1
7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
7x+27
H
=lim
x!1
10x+3
7
=1

LimitsofRationalFunctions
revisitedII
Example
Find lim
x!1
5x
2
+3x1
7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
5x
2
+3x1
7x+27
H
=lim
x!1
10x+3
7
=1

LimitsofRationalFunctions
revisitedIII
Example
Find lim
x!1
4x+7
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
4x+7
3x
2
+7x+27
H
=lim
x!1
4
6x+7
=0

LimitsofRationalFunctions
revisitedIII
Example
Find lim
x!1
4x+7
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
4x+7
3x
2
+7x+27
H
=lim
x!1
4
6x+7
=0

LimitsofRationalFunctions
revisitedIII
Example
Find lim
x!1
4x+7
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
4x+7
3x
2
+7x+27
H
=lim
x!1
4
6x+7
=0

LimitsofRationalFunctions
revisitedIII
Example
Find lim
x!1
4x+7
3x
2
+7x+27
if it exists.
Solu?on
Using L’Hôpital:
lim
x!1
4x+7
3x
2
+7x+27
H
=lim
x!1
4
6x+7
=0

LimitsofRationalFunctions
Fact
Let f(x)and g(x)be polynomials of degree p and q.
IIf p>q, thenlim
x!1
f(x)
g(x)
=1
IIf p<q, thenlim
x!1
f(x)
g(x)
=0
IIf p=q, thenlim
x!1
f(x)
g(x)
is the ra?o of the leading coefficients of
f and g.

Exponentialvs. geometricgrowth
Example
Find lim
x!1
e
x
x
2
, if it exists.
Solu?on
We have
lim
x!1
e
x
x
2
H
=lim
x!1
e
x
2x
H
=lim
x!1
e
x
2
=1:

Exponentialvs. geometricgrowth
Example
Find lim
x!1
e
x
x
2
, if it exists.
Solu?on
We have
lim
x!1
e
x
x
2
H
=lim
x!1
e
x
2x
H
=lim
x!1
e
x
2
=1:

Exponentialvs. geometricgrowth
Example
What about lim
x!1
e
x
x
3
?
Answer
S?ll1. (Why?)
Solu?on
lim
x!1
e
x
x
3
H
=lim
x!1
e
x
3x
2
H
=lim
x!1
e
x
6x
H
=lim
x!1
e
x
6
=1:

Exponentialvs. geometricgrowth
Example
What about lim
x!1
e
x
x
3
?
Answer
S?ll1. (Why?)
Solu?on
lim
x!1
e
x
x
3
H
=lim
x!1
e
x
3x
2
H
=lim
x!1
e
x
6x
H
=lim
x!1
e
x
6
=1:

Exponentialvs. geometricgrowth
Example
What about lim
x!1
e
x
x
3
?
Answer
S?ll1. (Why?)
Solu?on
lim
x!1
e
x
x
3
H
=lim
x!1
e
x
3x
2
H
=lim
x!1
e
x
6x
H
=lim
x!1
e
x
6
=1:

Exponentialvs. fractionalpowers
Example
Find lim
x!1
e
x
p
x
, if it exists.

Exponentialvs. fractionalpowers
Example
Find lim
x!1
e
x
p
x
, if it exists.
Solu?on (without L’Hôpital)
We have for all x>1, x
1=2
<x
1
, so
e
x
x
1=2
>
e
x
x
The right hand side tends to1, so the leL-hand side must, too.

Exponentialvs. fractionalpowers
Example
Find lim
x!1
e
x
p
x
, if it exists.
Solu?on (with L’Hôpital)
lim
x!1
e
x
p
x
=lim
x!1
e
x
1
2
x
1=2
=lim
x!1
2
p
xe
x
=1

Exponentialvs. anypower
Theorem
Let r be any posi?ve number. Thenlim
x!1
e
x
x
r
=1:
Proof.

Exponentialvs. anypower
Theorem
Let r be any posi?ve number. Thenlim
x!1
e
x
x
r
=1:
Proof.
Ifris a posi?ve integer, then apply L’Hôpital’s ruler?mes to the frac-
?on. You get
lim
x!1
e
x
x
r
H
=:::
H
=lim
x!1
e
x
r!
=1:

Exponentialvs. anypower
Theorem
Let r be any posi?ve number. Thenlim
x!1
e
x
x
r
=1:
Proof.
Ifris not an integer, letmbe the smallest integer greater thanr. Then
ifx>1,x
r
<x
m
;so
e
x
x
r
>
e
x
x
m
:The right-hand side tends to1by the
previous step.

Anyexponentialvs. anypower
Theorem
Let a>1and r>0. Thenlim
x!1
a
x
x
r
=1:
Proof.
Ifris a posi?ve integer, we have
lim
x!1
a
x
x
r
H
=:::
H
=lim
x!1
(lna)
r
a
x
r!
=1:
Ifrisn’t an integer, we can compare it as before.
So even lim
x!1
(1:00000001)
x
x
100000000
=1!

Anyexponentialvs. anypower
Theorem
Let a>1and r>0. Thenlim
x!1
a
x
x
r
=1:
Proof.
Ifris a posi?ve integer, we have
lim
x!1
a
x
x
r
H
=:::
H
=lim
x!1
(lna)
r
a
x
r!
=1:
Ifrisn’t an integer, we can compare it as before.
So even lim
x!1
(1:00000001)
x
x
100000000
=1!

Anyexponentialvs. anypower
Theorem
Let a>1and r>0. Thenlim
x!1
a
x
x
r
=1:
Proof.
Ifris a posi?ve integer, we have
lim
x!1
a
x
x
r
H
=:::
H
=lim
x!1
(lna)
r
a
x
r!
=1:
Ifrisn’t an integer, we can compare it as before.
So even lim
x!1
(1:00000001)
x
x
100000000
=1!

Logarithmicversuspowergrowth
Theorem
Let r be any posi?ve number. Thenlim
x!1
lnx
x
r
=0:
Proof.
One applica?on of L’Hôpital’s Rule here suffices:
lim
x!1
lnx
x
r
H
=lim
x!1
1=x
rx
r1
=lim
x!1
1
rx
r
=0:

Logarithmicversuspowergrowth
Theorem
Let r be any posi?ve number. Thenlim
x!1
lnx
x
r
=0:
Proof.
One applica?on of L’Hôpital’s Rule here suffices:
lim
x!1
lnx
x
r
H
=lim
x!1
1=x
rx
r1
=lim
x!1
1
rx
r
=0:

Outline
L’Hôpital’s Rule
Rela?ve Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x=0

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x=0

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x=0

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x=0

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x
=0

Indeterminateproducts
Example
Find lim
x!0
+
p
xlnx
This limit is of the form 0A(u).
Solu?on
Jury-rig the expression to make an indeterminate quo?ent. Then
apply L’Hôpital’s Rule:
lim
x!0+
p
xlnx=lim
x!0
+
lnx
1=
p
x
H
=lim
x!0
+
x
1

1
2
x
3=2
=lim
x!0
+
2
p
x=0

Indeterminatedifferences
Example
lim
x!0
+
(
1
x
cot2x
)
This limit is of the form1 1.

IndeterminateDifferences
Solu?on
Again, rig it to make an indeterminate quo?ent.
lim
x!0
+
(
1
x
cot2x
)
=lim
x!0
+
sin(2x)xcos(2x)
xsin(2x)
H
=lim
x!0
+
cos(2x) +2xsin(2x)
2xcos(2x) +sin(2x)
=1
The limit is+1because the numerator tends to1while the
denominator tends to zero but remains posi?ve.

IndeterminateDifferences
Solu?on
Again, rig it to make an indeterminate quo?ent.
lim
x!0
+
(
1
x
cot2x
)
=lim
x!0
+
sin(2x)xcos(2x)
xsin(2x)
H
=lim
x!0
+
cos(2x) +2xsin(2x)
2xcos(2x) +sin(2x)
=1
The limit is+1because the numerator tends to1while the
denominator tends to zero but remains posi?ve.

IndeterminateDifferences
Solu?on
Again, rig it to make an indeterminate quo?ent.
lim
x!0
+
(
1
x
cot2x
)
=lim
x!0
+
sin(2x)xcos(2x)
xsin(2x)
H
=lim
x!0
+
cos(2x) +2xsin(2x)
2xcos(2x) +sin(2x)
=1
The limit is+1because the numerator tends to1while the
denominator tends to zero but remains posi?ve.

IndeterminateDifferences
Solu?on
Again, rig it to make an indeterminate quo?ent.
lim
x!0
+
(
1
x
cot2x
)
=lim
x!0
+
sin(2x)xcos(2x)
xsin(2x)
H
=lim
x!0
+
cos(2x) +2xsin(2x)
2xcos(2x) +sin(2x)
=1
The limit is+1because the numerator tends to1while the
denominator tends to zero but remains posi?ve.

Checkingyourwork
This all goes in the thought cloud
lim
x!0
tan2x
2x
=1, so for smallx, tan2x2x. So cot2x
1
2x
and
1
x
cot2x
1
x

1
2x
=
1
2x
! 1
asx!0
+
.

Indeterminatepowers
Example
Find lim
x!0
+
(12x)
1=x
Solu?on

Indeterminatepowers
Example
Find lim
x!0
+
(12x)
1=x
Solu?on
Take the logarithm:
ln
(
lim
x!0
+
(12x)
1=x
)
=lim
x!0
+
ln
(
(12x)
1=x
)
=lim
x!0
+
ln(12x)
x

Indeterminatepowers
Example
Find lim
x!0
+
(12x)
1=x
Solu?on
This limit is of the form
0
0
, so we can use L’Hôpital:
lim
x!0
+
ln(12x)
x
H
=lim
x!0
+
2
12x
1
=2

Indeterminatepowers
Example
Find lim
x!0
+
(12x)
1=x
Solu?on
This limit is of the form
0
0
, so we can use L’Hôpital:
lim
x!0
+
ln(12x)
x
H
=lim
x!0
+
2
12x
1
=2
This is not the answer, it’s the log of the answer! So the answer we
want ise
2
.

Anotherindeterminatepowerlimit
Example
Find lim
x!0
+
(3x)
4x
Solu?on
ln lim
x!0
+
(3x)
4x
=lim
x!0
+
ln(3x)
4x
=lim
x!0
+
4xln(3x) =lim
x!0
+
ln(3x)
1=4x
H
=lim
x!0
+
3=3x
1=4x
2
=lim
x!0
+
(4x) =0
So the answer is e
0
=1.

Anotherindeterminatepowerlimit
Example
Find lim
x!0
+
(3x)
4x
Solu?on
ln lim
x!0
+
(3x)
4x
=lim
x!0
+
ln(3x)
4x
=lim
x!0
+
4xln(3x) =lim
x!0
+
ln(3x)
1=4x
H
=lim
x!0
+
3=3x
1=4x
2
=lim
x!0
+
(4x) =0
So the answer is e
0
=1.

Summary
FormMethod
0
0
L’Hôpital’s rule directly
1
1
L’Hôpital’s rule directly
0A ujiggle to make
0
0
or
1
1
.
1 1combine to make an indeterminate product or quo?ent
0
0
take ln to make an indeterminate product
1
0
di?o
1
1
di?o

FinalThoughts
IL’Hôpital’s Rule only works on indeterminate quo?ents
ILuckily, most indeterminate limits can be transformed into
indeterminate quo?ents
IL’Hôpital’s Rule gives wrong answers for non-indeterminate
limits!