Liquid Based and Solid Based Additive Manufacturing systems

vijimech408 7 views 33 slides May 16, 2025
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

In this Presentation u will u will process of #Additive Manufacturing


Slide Content

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
ADDITIVE MANUFACTURING
(20IP653)
Module-2
Liquid based & Solid based AM systems
Course Instructor
Vijay Praveen P M
Assistant Professor
Department of I&P Engg.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
2
SYLLABUS
LiquidbasedadditiveManufacturingsystems:Classification
–Liquidbasedsystem–StereolithographyApparatus(SLA)-
Principle,process,advantagesandapplications–Solid
basedsystem–FusedDepositionModeling–Principle,
process,advantagesandapplications,LaminatedObject
Manufacturing.
SolidbasedAMSystems:LaminatedObjectManufacturing
(LOM):ModelsandSpecifications,Process,working
principle,Applications,AdvantagesandDisadvantages,
Casestudies.FusedDepositionModeling(FDM):Models
andspecifications,Process,workingprinciple,
Applications,AdvantagesandDisadvantages,Casestudies.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
3
Introduction
➢Mostliquid-basedrapidprototypingsystemsbuild
partsinavatofphoto-curableliquidresin,an
organicresinthatcuresorsolidifiesunderthe
effectofexposuretolaserradiation,usuallyinthe
UVrange.
➢Thelasercurestheresinnearthesurface,forming
ahardenedlayer.Whenalayerofthepartis
formed,itisloweredbyanelevationcontrol
systemtoallowthenextlayerofresintobe
similarlyformedoverit.
➢Thiscontinuesuntiltheentirepartiscompleted.
Thevatcanthenbedrainedandthepartremoved
forfurtherprocessing,ifnecessary

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
5

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
6
Laser Stereolithography
Apparatus(SLA)
StereoLithography(SL)isthefirstprocessever
developedinrapidprototypingfieldwiththemeaning
of.3-dimensionalprinting.CharlesHulldevelopedand
patentedthecompletedsystemin1986.Thenhe
founded3DSystems,inc.todevelopcommercial
applicationsoftheprocess.
Stereolithographybuildsplasticpartsorobjectsa
layeratatimebytracingalaserbeamonthesurface
ofavatofliquidphotopolymer.Thisclassofmaterials
originallydevelopedfortheprintingandpackaging
industries,quicklysolidifieswhereverthelaserbeam
strikesthesurfaceoftheliquid.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
7
PrincipleofStereoLithography:
TheSLAprocessisbased
fundamentallyonthefollowing
principles:
(1)Partsarebuiltfromaphoto-
curableliquidresinthat
cureswhenexposedtoa
laserbeamwhichscans
acrossthesurfaceofthe
resin.
(2)Thebuildingisdonelayerby
layer,eachlayerbeing.scanned
bytheopticalscanningsystem
andcontrolledbyanelevation
mechanismwhichlowersatthe
completionofeachlayer.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
8
WorkingprocessofStereoLithography:
➢SLAshavefourmainparts:atankthatcanbefilledwithliquidplastic(photopolymer),
aperforatedplatformthatisloweredintothetank,anultraviolet(UV)laseranda
computercontrollingtheplatformandthelaser,
➢IntheinitialstepoftheSLAprocess,athinlayerofphotopolymer(usuallybetween
0.05-0.15mm)isexposedabovetheperforatedplatform.TheUVlaserhitsthe
perforatedplatform,"painting"thepatternoftheobjectbeingprinted.Itsscanata
speedof500to2500mm/sec
➢TheUV-curableliquidhardensinstantlywhentheUVlasertouchesit,formingthefirst
layerofthe3D-printedobject.
➢Oncetheinitiallayeroftheobjecthashardened,theplatformislowered,exposinga
newsurfacelayerofliquidpolymer.Thelaseragaintracesacrosssectionoftheobject
beingprinted,whichinstantlybondstothehardenedsectionbeneathit.
➢Thisprocessisrepeatedagainandagainuntiltheentireobjecthasbeenformedandis
fullysubmergedinthetank.
➢Theplatformisthenraisedtoexposeathree-dimensionalobject.Afteritisrinsedwith
aliquidsolventtofreeitofexcessresin,theobjectisbakedinanultravioletovento
furthercuretheplastic.
➢Objectsmadeusingstereolithographygenerallyhavesmoothsurfaces,butthe
qualityofanobjectdependsonthequalityoftheSLAmachineusedtoprintit.
➢Theamountoftimeittakestocreateanobjectwithstereolithographyalsodepends
onthesizeofthemachineusedtoprintit.Smallobjectsareusuallyproducedwith
smallermachinesandtypicallytakebetweensixtotwelvehourstoprint.Larger
objects,whichcanbeseveralmetersinthreedimensions,takedays.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
9
Advantages
➢Roundtheclockoperation.TheSLAcanbeusedcontinuously
andunattendedroundtheclock.
➢Goodusersupport.Thecomputerizedprocessservesasagood
usersupport.
➢Buildvolumes.ThedifferentSLAmachineshavebuildsvolumes
rangingfromsmalltolargetosuittheneedsofdifferentusers.'
➢Goodaccuracy.TheSLAhasgoodaccuracyandcanthusbe
usedformanyapplicationareas.
➢Surfacefinish.TheSLAcanobtainoneofthebestsurface
finishesamongstRptechnologies.
➢Widerangeofmaterials.Thereisawiderangeofmaterials,
fromgeneral-purposematerialstospecialtymaterialsfor
specificapplications

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
10
Disadvantages
➢Requiressupportstructures,Structuresthathaveoverhangsandundercuts
musthavesupportsthataredesignedandfabricatedtogetherwiththemain
structure.
➢Requirespost-processing.Post-processingincludesremovalofsupportsand
other
unwantedmaterials,whichistedious,time-consumingandcandamagethemodel.
➢Requirespost-curing.Post-curingmaybeneededtocuretheobject
completelyandensuretheintegrityofthestructure.
ApplicationsofSLA:
TheSLAtechnologyprovidesmanufacturerswithcostjustifiablemethodsfor
reducingtimetomarket,loweringproductdevelopmentcosts,gaininggreater
controloftheirdesign
processandimprovingproductdesign.Therangeofapplicationsincludes:
✓ Modelsforconceptualization,packagingandpresentation.
✓ Prototypesfordesign,analysis,verificationandfunctionaltesting.
✓ Partsforprototypetoolingandlowvolumeproductiontooling.
✓ Patternsforinvestmentcasting,sandcastingandmoulding.
✓ Toolsforfixtureandtoolingdesign,andproductiontooling.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
11

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
12

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
13
Solid Based AM
•Solid-basedrapidprototypingsystemsare
verydifferentfromtheliquid-basedphoto-
curingsystems.
•Theyarealsodifferentfromoneanother,
thoughsomeofthemdousethelaserinthe
prototypingprocess.Thebasiccommon
featureamongthesesystemsisthattheyall
utilizesolids(inoneformoranother)asthe
primarymediumtocreatetheprototype

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
14
Classification

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
15
Solid sheet systems
Thisisanobsoletetechnologywhichisnotseenwidelyused
nowadays.Exampleofearliestsolidsheetsystemisthelaminated
objectmanufacturing(LOM)systemfromHelisys,USA.This
technologyusesalasertocutoutprofiles,fromsheetpaper,supplied
fromacontinuousroll,whichformedthelayersofthefinalpart.
Laminated object Manufacturing (LOM) process:
ThisprocessisdevelopedbyHelisysofTorrance,
California:USA,in1998whichisalayeradditiveprocess.
Inthisprocess,theMaterialconsistsofpaperlaminated
whichiscoatedwiththermoplasticadhesiveandrolled
uponspools.Asshowninthefig

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
16
Principle
(1)Partsarebuilt,layer-by-layer,bylaminatingeachlayerofpaperor
othersheet-formmaterialsandthecontourofthepartonthatlayer
iscutbyaCO2laser.
(2)Eachlayerofthebuildingprocesscontainsthecross-sectionsof
oneormanyparts.Thenextlayeristhenlaminatedandbuilt
directlyontopofthelaser-cutlayer.
(3)TheZ-controlisactivatedbyanelevationplatform,whichlowers
wheneachlayeriscompleted,andthenextlayeristhenlaminated
andreadyforcutting.TheZ-heightisthenmeasuredfortheexact
heightsothatthecorrespondingcrosssectionaldatacanbe
calculatedforthatlayer.
(4)Noadditionalsupportstructuresarenecessaryasthe“excess”
material,whicharecross-hatchedforlaterremoval,actasthe
support.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
17
working
➢afeedermechanismadvances
thesheetoverthebuildplatform,
whereabaseismadeupfrom
paperanddouble-sidedfoam
tape.
➢Aheatedrollerappliespressure
tobondthepapertothebase.
➢Cotlasertracestheoutlineof
thecaddatafedinthecomputer.
Afterthelasercuttingis
completedtheplatformmoves
downandafreshsheetof
laminatedpaperisrolledon.The
processisrepeatedasneededto
buildthepart.Lomprocessis
usedinpatternmakingandtoy
designingasthisprocessis
cheaperandhighvolume
productioncanbeachieved.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
18

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
19
Materials
Potentially,anysheetmaterialwithadhesive
backingcanbeutilizedinLaminatedObject
Manufacturing.
Ithasbeendemonstratedthatplastics,metals,
andevenceramictapescanbeused.However,
themostpopularmaterialhasbeenKraftpaper
withapolyethylene-basedheatsealadhesive
systembecauseitiswidelyavailable,cost-
effective,andenvironmentallybegin

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
20

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
21

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
22
Fused Deposition Modelling (FDM)
•Principle
•TheprincipleoftheFDMisbased
onsurfacechemistry,thermal
energy,andlayermanufacturing
technology..
•Thematerialinfilament(spool)
formismeltedinaspecially
designedhead,whichextrudesonthe
model.
•Asitisextruded,itiscooledandthus
solidifies.Toformthemodel.
•Themodelisbuiltlayerbylayer,like
theotherRPsystems.
•Parameterswhichaffectperformance
andfunctionalitiesofthesystemare
materialcolumnstrength,material
viscosity,positioningaccuracy,road
widths, deposition speed,
volumetricflowrate,tipdiameter,
envelopetemperature,andpart
geometry

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
23
Step1:ThePreparation
Ageometricmodelofaconceptualdesigniscreatedon
CADsoftwarewhichusesIGESorSTLformattedfiles,It
canthenimportedintotheworkstationwhereitis
processedThroughTheQuickSliceandSupportWork
proprietysoftwarebeforeloadingtoFDMsystems.
TheCADfileisslicedintohorizontallayersafterthepart
isorientedfortheoptimumbuildposition,andany
necessarysupportstructuresareautomaticallydetected
andgenerated.Theslicethicknesscanbesetmanuallyto
anywherebetween0.172to0.356mm(0.005to0.014in)
dependingontheneedsofthemodels

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
24
Step2:TheBuild
Thenozzleisheatedtomelttheplasticfilamentandismountedtoa
mechanicalstagewhichcanbemovedinbothhorizontaldirections.
Asthenozzleismovedoverthetableintherequiredgeometry,it
depositsathinbeadofextrudedplastictoformeachlayerandcreate
atwo-dimensionalcrosssectionofthemodel.
Theplastichardensimmediatelyafterbeingsquirtedfromthenozzle
andbondstothelayerbelow.
Theplatformthendescendswherethenextlayerisextrudeduponthe
previous.Thiscontinuesuntilthemodeliscompleted,.Theentire
systemiscontainedwithinachamberwhichisheldatatemperature
justbelowthemeltingpointoftheplastic.
Step3:Post-processing
Onceallthelayersaredrawnandthemodeliscomplete,themodelis
thenremovedfromtheplatform,andthesupportstructuresare
removedfromthepart

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
25

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
26
Materials
Materials are available, such as
➢AcrylonitrileButadieneStyrene(ABS)-Standard
prototypingplasticwithdurability,
➢Polycarborate(PC),
➢Polyamide(PA),
➢Polystyrene(PS),
➢Lignin,
➢Rubber,amongmanyothers,withdifferent
trade-offsbetweenstrengthandtemperature
properties.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
27

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
28

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
29

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
30
Case study-1
1.National Aeronautical and Space Administration (NASA) and Boeing
Rocketdyne Uses LOM TM to Create Hot Gas Manifold for Space
Shuttle Main Engine
One successful example of how an organization implements LOMTM
systems into their design process would be from the Rapid Proto-typing
Laboratory, NASA’s Marshall Space Flight Center (MSFC), Huntville, AL.
Thelaboratorywassetupinitiallytoconductresearchand
developmentindifferentwaystoadvancethetechnologyof
buildingpartsinspacebyremoteprocessingmethods.However,as
MSFCengineersfoundalotmoreusefulapplications,i.e.,productionof
conceptmodelsandproof-outofcomponentdesignsotherthan
remoteprocessingwhenrapidprototypingmachineswereinstalled,the
centersoonbecamearapidprototypingshopforotherMSFCgroups,as
wellasotherNASAlocationsandNASAsubcontractors.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
31
ThecenteracquiredtheLOM-1015TMmachinefromHelisysin1999
toaddontheirexistingrapidprototypingsystemsandthemachine
wasputthroughitsfirstchallengewhenMSFC’scontractor,Boeing/
Rocketdynedesignedahotgasmanifoldforthespaceshuttle’smain
engine.
Thepartmeasured2.40m(8ft)longand0.10m(4in)indiameter
andwascomplexindesignwithmanytwistsandturnsand“tee”
junctionconnectors.Iftheconventionalmethodofcreatingthe
prototypewereemployed,itwouldrequireindividualsteelpartstobe
weldedtogethertoformtheprototype.
However,therewasalwaysapotentialofleakageatthejointpartand
thus,analternatemethodwasconsidered.Theprototypewastobe
madefromasinglepieceofsteelandsuchasolutionwasnotonly
expensive,theprototypebuiltdidnotfitwelltothemainengineof
thespaceshuttle.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
32
Eventually,engineersatBoeingdecidedtobuildthepartusingthe
LOMTMprocessatMSFC.TheypreparedaCADdrawingofthedesignand
sentitovertoMSFC.
Thedesignwassectionedintoeightparts,eachwiththeirregularboss-
and-socketbuiltinthemsoastofacilitatejoiningofthepartstogether
uponcompletion.
Thewholebuildingprocesstooktendaystocomplete,includingthree
daysofreworkforflawedparts.
Itwasworkedoncontinuously.OneadvantageofusingtheLOMTM
machineisthatthesystemcanbeleftunattendedthroughoutthe
buildingprocessandifthesystemrunsoutofpaperorthepapergets
jammedwhilebuilding,itisabletoalerttheoperatorviaapager.The
prototypewasthenmountedontotheactualspaceshuttleforfinalfit
checkanalysis.
Itwasestimatedthatthecompanysavedtensofthousandsofdollars,
althoughBoeingdeclinedtorevealtheactualcostsaving.Thewhole
processalsodrasticallyreducesthebuildingtimefromtwotothree
monthstoameretendays.

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
33
Case study-2
•STRATASYS’FUSEDDEPOSITIONMODELING(FDM)
StratasysInc.wasfoundedin1989andhasdevelopedmostofthe
company’sproductsbasedontheFusedDepositionModeling(FDM)
technology.
ThetechnologywasfirstdevelopedbyScottCrampin1988andthepatent
wasawardedintheU.S.in1992.
FDMusestheextrusionprocesstobuild3Dmodels.Stratasysintroducedits
firstrapidprototypingmachine,the3Dmodeler®inearly1992andstarted
shippingtheunitslaterthatyear.Overthepastdecade,Stratasyshasgrown
progressively,seeingherrapidprototypingmachines’salesincreasefromsix
unitsinthebeginningtoatotalof1582unitsintheyear2000[9].

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING www. jssstuniv.inJSSSTU
R
L
J
I
T
34
Important Questions
•1.ExplainwithaneatsketchSLAAMprocess
andalsostateitsadvantages,disadvantagesand
applicationsofit.
•2.ExplainwithaneatsketchLOMAMprocess
andalsostateitsadvantages,disadvantagesand
applicationsofit.
•ExplainwithaneatsketchFDMAMprocessand
alsostateitsadvantages,disadvantagesand
applicationsofit