LMS .pdf

AWANISHKUMAR84 396 views 20 slides Jul 01, 2022
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

NOISE CANCELLATION USING LMS ALGORITHM

OBJECTIVE
• INTRODUCTION
• ADAPTIVE FILTER
• BLOCK DIAGRAM
• LEAST MEAN SQUARE - LMS
• ADVANTAGES AND DISADVANTAGES
• MATLAB CODE
• CONCLUSION

ADAPTIVE NOISE CANCELLATION

➢ Adaptive noise cancellation is the approach used for estimating a de...


Slide Content

PONDICHERRY UNIVERSITY
DEPARTMENT OF ELECTRONICS
ENGINEERING
NOISE CANCELLATION USING LMS ALGORITHM
SUBMITTEDTO:
PROF.DR.K.ANUSUDHA
DEPT.OFELECTRONICSENGINEERING
SUBMITTEDBY:
AWANISHKUMAR
M.TECH(ECE)-1
st
Year
21304006
1

CONTENTS
•OBJECTIVE
•INTRODUCTION
•ADAPTIVE FILTER
•BLOCK DIAGRAM
•LEAST MEAN SQUARE -LMS
•ADVANTAGES AND DISADVANTAGES
•MATLAB CODE
•CONCLUSION
2

OBJECTIVE
•Themainobjectiveofthispresentationistoeliminatenoisefromthecorrupted
inputsignalandadapttheAdaptivetransversalfilter(ATF)weightsintheway
thatthemeansquareoftheestimatederroristobeminimizedbyusingthe
LeastMeanSquare(LMS)algorithm.
•Togetthebestestimateofthedesiredsignalfromthenoise-corruptedsignal.
•Toextractthedesiredsignalfromthenoisyprocess,wherethedesiredsignalisa
sinusoidwithunitamplitudethatisobservedinthepresenceofadditivenoise.
3

INTRODUCTION
Inreal-timedigitalsignalprocessingapplications,therearemanysituations
inwhichusefulsignalsarecorruptedbyunwantedgeneratedsignalsthat
areclassifiedasnoise.Noisecanoccurrandomlyoraswhitenoisewithan
evenfrequencydistributionorasfrequency-dependentnoise.Theterm
noiseincludesnotonlythermalorflickernoise,butalldisturbances,eitherin
stimuli,environmentorcomponentsofsensorsandcircuits.Noisydatamay
arisefromavarietyofinternalandexternalsources.
4

ADAPTIVE NOISE CANCELLATION
➢Adaptivenoisecancellationistheapproachusedforestimatingadesired
signald(n)fromanoise-corruptedobservation.
x(n)=d(n)+v1(n)
➢Usuallythemethodusesaprimaryinputcontainingthecorruptedsignal
andareferenceinputcontainingnoisecorrelatedinsomeunknownway
withtheprimarynoise.
➢Thereferenceinputv1(n)canbefilteredandsubtractedfromtheprimary
inputtoobtainthesignalestimate?????? ̂(n).
➢Asthemeasurementsystemisablackbox,noreferencesignalthatis
correlatedwiththenoiseisavailable.
5

ADAPTIVE FILTER
•Anadaptivefilteriscomposedoftwoparts,thedigitalfilterandthe
adaptivealgorithm.
•Adigitalfilterwithadjustablecoefficientswn(z)andanadaptivealgorithm
whichisusedtoadjustormodifythecoefficientsofthefilter.
•TheadaptivefiltercanbeaFiniteImpulseResponseFIRfilteroran
InfiniteImpulseResponseIIRfilter.
6

BLOCK DIAGRAM OF AN ADAPTIVE FILTER
7

➢Thefilteringprocessinvolvesthecomputationofthefilteroutputy(n)in
responsetothefilterinputsignalx(n).
➢Thefilteroutputiscomparedwiththedesiredresponsed(n),generatingan
errorestimatione(n).
➢Thefeedbackerrorsignale(n)isthenusedbytheadaptivealgorithmtomodify
theadjustablecoefficientsofthefilterwn,generallycalledweightinorderto
minimizetheerroraccordingtosomeoptimizationcriterion.
8

ALGORITHMS FOR ADAPTIVE EQUALIZATION
•Therearethreedifferenttypesofadaptivefilteringalgorithms.
➢Zero forcing (ZF)
➢least mean square (LMS)
➢Recursive least square filter (RLS)
•Recursiveleastsquareisanadaptivefilteralgorithmthatrecursivelyfindsthecoefficients
thatminimizeaweightedlinearleastsquarescostfunctionrelatingtotheinputsignals.
•Thisapproachisdifferentfromtheleastmean-squarealgorithmthataimtoreducethe
mean-squareerror.
9

Least Mean Square -LMS
•TheLMSalgorithmingeneral,consistsoftwobasicsprocedure:
1.Filteringprocess,whichinvolve,computingtheoutput(d(n-d))ofalinearfilterin
responsetotheinputsignalandgeneratinganestimationerrorbycomparingthis
outputwithadesiredresponseasfollows:
y(n)isfilteroutputandisthedesiredresponseattimen
2. Adaptive process, which involves the automatics adjustment of the parameter of the
filter in accordance with the estimation error.
10

11
Structure of adaptive filter with LMS algorithm

➢LMS algorithm equation
➢where wnis the estimate of the weight value vector at time n, x(n) is the input
signal vector.
➢e(n) is the filter error vector and μ is the step-size, which determines the filter
convergence rate and overall behavior.
➢One of the difficulties in the design and implementation of the LMS adaptive
filter is the selection of the step-size μ. This parameter must lie in a specific
range, so that the LMS algorithm converges.
➢LMS algorithm, aims to reduce the mean-square error.
12

RATE OF CONVERGENCE
⮚Convergence of the LMS adaptive algorithm
•TheconvergencecharacteristicsoftheLMSadaptivealgorithmdependsontwo
factors:thestep-sizeμandtheeigenvaluespreadoftheautocorrelationmatrix.
Thestep-sizeμmustlieinaspecificrange
where????????????????????????isthelargesteigenvalueoftheautocorrelationmatrixRx.
•Alargevalueofthestep-sizeμwillleadtoafasterconvergencebutmaybeless
stablearoundtheminimumvalue.Theconvergenceofthealgorithmisinversely
proportionaltotheeigenvaluespreadofthecorrelationmatrix.
13

ADVANTAGES AND DISADVANTAGES
➢LMSSimpleandcanbeeasilyappliedbutRLSIncreasedcomplexity
andcomputationalcost.
➢LMSTakeslongertoconvergebutRLSfasterconvergence.
➢Largersteadystateerrorwithrespecttotheunknownsystem.
➢Objectiveistominimizethecurrentmeansquareerrorbetweenthe
desiredsignalandtheoutput.
14

MATLAB CODE
clc;
clear;
close all;
% Generation Desired signal
t = 0.001:0.001:1;
D = 2*sin(2*pi*50*t);
% Generating signal corrupted with
noise
n = numel(D);
A = D(1:n)+0.9*randn(1,n);
M = 25;
W = zeros(1,M);
Wi = zeros(1,M);
E = [];
mu = 0.002;
for i= M:n
E(i) = D(i) -Wi*A(i:-1:i-M+1)';
Wi = Wi + 2*mu*E(i)*A(i:-1:i-M+1);
end
Est = zeros(n,1); % Estimation of the signal
for i = M:n
j = A(i:-1:i-M+1);
Est(i) = ((Wi)*(j)');
end
Err =Est’-D; % computing the error signal
%Display of signal
figure(1)
subplot(4,1,1);
plot(D);
title('Desired signal');
subplot(4,1,2);
plot(A);
title('signal corrupted with noise');
subplot(4,1,3);
plot(Est);
title('LMS -Estimated signal');
subplot(4,1,4);
plot(Err);
title('Error signal');
15

16

OUTPUT -LMS ESTIMATED SIGNAL
17

CONCLUSION
The LMS algorithm is simple and has less computational complexity when compared
with the RLS algorithm. But the RLS algorithm has faster convergence rate than LMS
algorithm at the cost of higher computational complexity. The plays a role in
RLS algorithm similar to that of step size parameter in the LMS algorithm .RLS
algorithm has better performance than LMS algorithm in the low signal to noise ratio.
18

REFERENCE
➢ AdaptivefiltertheorybySimonHaykin.
➢ Johan. G. Proakis, “Digital Communications”, Fourth
Edition, McGrow-Hill, 2001.
➢ Adaptive Filter Algorithm, [online] Available from:
➢ http://zone.ni.com/reference/enXX/help/372357A01/lvaftco
ncepts/firfilter/adaptive algorithm.
➢ MatlabforscientistsandEngineersbyBrianDHahn.
19

THANK YOU
20