Effect of Shading Devices, Infiltartion-stack effect, wind pressures, Internal Heat Gains, System Heat gain, cooling and heating load estimates, Energy conservations in airconditioning buildings
Size: 1.57 MB
Language: en
Added: Dec 04, 2023
Slides: 69 pages
Slide Content
Unit- 4: Load Calculations
in HVAC
Prepared by
Ankur Sachdeva
Assistant Professor, ME
Distribution of Solar Radiation
•Solarradiationformsthegreatestsinglefactorofcoolingloadinbuildings.
•Itis,therefore,necessarytostudythesubjectnotonlyforthepurposeofloadcalculationbutalso
fromthepointofviewofloadreduction.
•Thesunisasphereofintenselyhotgaseousmatter.Itisafusionreactor—themostimportantofits
reactionsisthecombinationofhydrogentoformhelium,thedifferenceinmassbeingconvertedto
energy.
•Thisfusionenergyisproducedintheinteriorofthesolarsphereatatemperatureofmanymillions
ofdegrees.Theenergyistransferredtothesurfaceofthesunbyradiationandconvection.
•Forallpracticalpurposes,itmaybeconsideredtoberadiatingenergyasablackbodyatan
effectivetemperatureof6000K.
•Thespectrumofthewavelengthofradiationstretchesfrom0.29to4.75μm.Asaconsequenceof
hightemperature,themaximumradiationintensityisfoundtobeatawavelengthof0.5μm.
Distribution of Solar Radiation
•Themassofthesunisabout332,000timesthatoftheearthanditsdiameterisabout1,392,400
km.Theearthisabout12,710kmindiameter.Itmakesonerotationaboutitsaxisin24hours,and
arevolutionaroundthesuninaperiodofapproximately365.25days
•Theearthrevolvesroundthesuninanellipticalorbit.TheearthisclosesttothesunonJanuary1,
andremotestfromitonJuly1(about3.3percentfartheraway).
•Themeandistanceoftheearthfromthesunis149,500,000km.Theintensityofsolarradiation
outsidetheearth’satmospherevariesinverselywiththesquareofthedistancebetweenthecenter
oftheearthandthecenterofthesun.
•Accordingly,theearthreceives7percentmoreradiationinJanuarythaninJuly.
•Theearth’saxisofrotationis,however,tilted23.5°withrespecttoitsorbitaroundthesun.This
angleoftiltisessentiallyresponsibleforthedistributionofsolarradiationovertheearth’ssurface
and,consequently,thechangeofseasons.
Earth’s position with respect to the sun
during summer and winter
Empirical Methods To Evaluate Heat
Transfer Through Walls And Roofs
•Therearetwoapproachestoempiricalcalculationsofheattransferthroughwalls
androofs.Theyare:
•(i)Thedecrementfactorandtimelagmethod.
•(ii)Theequivalenttemperaturedifferentialmethod.
•Bothmethodsuseanalytical-experimentalresultsfortheirformulations.
•Theequivalenttemperaturedifferentialmethodismorecommonlyusedbyair-
conditioningengineersasitisalsoapplicabletosunlitwallsandroofs.
Decrement Factor and Time-lag Method
•If the thermal capacity of the wall is ignored, then the instantaneous rate of heat transfer through
the wall at any time t is given by
•and on an average basis, the mean heat flow is given by
•But most building materials have a finite thermal capacity which is expressed as
mC= ρCV= ρC(A Δx)
•where m = Mass of wall
•ρ, C = Density and specific heat of wall material
•A = Cross-sectional area of wall
•Δx= Wall thickness.
Decrement Factor and Time-lag Method
•Ithasbeenseenthatthereisatwo-foldeffectofthermalcapacityonheattransfer:
•(i)Thereisatimelagbetweentheheattransferattheoutsidesurfaceq
0andtheheattransferatthe
insidesurfaceq
i
•(ii)Thereisadecrementintheheattransferduetotheabsorptionofheatbythewalland
subsequenttransferofapartofthisheatbacktotheoutsideairwhenitstemperatureislower.
•Thermalcapacityofmostmaterials,therefore,essentiallydependsontheirdensityandthickness.
TheIHVEGuidegivesthevalueofthetimelaganddecrementfactorasafunctionofthewall
thicknessanddensityofconstructionmaterials.
•Consideringtheeffectofthermalcapacity,theactualheattransferatanytimeτis
•wherete
τ-ɸisthesol-airtemperatureattimeτ-ɸ,i.e.,ɸ hoursbeforetheheattransferistobe
calculated.
Decrement Factor and Time-lag Method
Decrement Factor and Time-lag Method
•Ifthewallisthick,thedecrementfactorwillbesmallasisalsoseenfromTables1
and2.
•Forexample,fromTable2,thedecrementfactorfora15cmconcreteroofis0.48
whereasfora5cmconcreteroof,itis0.83.
Infiltration Due to Door Openings
•Infiltrationthroughdoorsdependsonthetypeofdoor,aswellasitsusage.
•Oftenthetablesdevelopedfordoorsgivetheinfiltrationratesthroughdoorswhich
includetheleakageratesthroughcracksduetodooropenings.
•Tablesbelowgivetheinfiltrationratesthroughdoorsonthewindwardsidefor
variousdoorconstructionsandusage,andforawindvelocityof12kmph.
Load due to Infiltration
•Infiltration involves the heat gain or loss to the conditioned space due to the replacement of the
conditioned inside air by the undesirable outside air.
•This load includes both sensible and latent and is evaluated in the same manner as the ventilation
load from the infiltration rate (cmm).
•If ventilation air is greater than infiltration/ exfiltration air then infiltration may not be considered
separately.
Piping, Tanks, Evaporation of Water from
a Free Surface and Steam
•Heatisaddedtotheconditionedspacefromrunningpipescarryinghotfluidsduetoheattransfer.
Ontheotherhand,coldpipestakeawayheatfromthespace.
•Opentankscontainingwarmwatercontributebothsensibleheatandlatentheattothespacedueto
evaporation.Thiscanbecalculatedbyknowingtherateofevaporationandenergybalance.
•Inindustrialairconditioning,productshaveoftentobedried.Thisinvolvesboththelatentheat
gainandthesensibleheatgaintothespacefromthehotsurfacesofthedryerdependinguponthe
dryingrate.
•Whensteamisenteringtheconditionedspace,thesensibleheatgainisverylittle.Itisequalto
onlythedifferenceintheenthalpyofsteamatthesteamtemperatureandtheenthalpyofwater
vapourattheroomdry-bulbtemperature.
•Themainloadisintheformofthelatentheatgain.
Product Load
•Inthecaseofcoldstorage,theenclosuresare
insulatedwithatleast10-15cmofthermocoleand
arealmostcompletelysealed.
•Thus,manyoftheloadspresentinbuildingsfor
comfortairconditioningareeitherabsentorlessened
inthecaseofcoldstorage.
•However,inadditiontotheheatwhichisremoved
fromproductsatthetimeofinitialloading,thereis
alsotheheatproducedbythecommoditiesduring
storage.
•Thisheatofrespirationformsasizableproductload
evenatastoragetemperatureof0°C.Athigher
temperatures,itismore.
•Theapproximaterateofevolutionofheatbyvarious
productsatdifferenttemperaturesisgiveninTable.
Heat of respiration of products in J/kg per 24 hours
System Heat Gains
•Thesystemheatgainistheheatgain(orloss)ofanair-conditioningsystem
comprisingitscomponents,viz.,ducts,piping,air-conditioningfan,pumps,etc.
•Thisheatgainistobeinitiallyestimatedandincludedinthetotalheatloadforthe
air-conditioningplant.
•Thesameshouldbecheckedafterthewholeplanthasbeendesigned.
Supply Air Duct Heat Gain and Leakage Loss
•Thesupplyair,normally,hasatemperatureof10to15°C.
•Theductmaypassthroughanunconditionedspacehavinganambienttemperatureof40°C.
•Thisresultsinasignificantheatgaintilltheairreachestheconditionedspaceeventhoughtheductmaybe
insulated.
•Theheatgaincanbecalculatedusingthefollowingexpression,Q=UA(t
a–t
s)
whereUistheoverallheat-transfercoefficient,Aisthesurfaceareaoftheductsystemexposedtothe
ambienttemperaturet
aandt
sisthesupplyairtemperature.
•Asaroughestimate,avalueoftheorderof5percentoftheroom’ssensibleheatmaybeaddedtothetotalsensible
heatifthewholesupplyductisoutsidetheconditionedspace,andproportionatelylessifsomeofitiswithinthe
conditionedspace.
•Ithasbeenfoundthatductleakagesareoftheorderof5to30percentdependingontheworkmanship.Airleakages
fromsupplyductsresultinaseriouslossofthecoolingcapacityunlesstheleakagestakeplacewithinthe
conditionedspace.
•Ifallductsareoutsidetheconditionedspacewhich,normally,isstrictlyavoided,a10percentleakageistobe
assumedwhichshouldbeconsideredasacompleteloss.Whenonlyapartofthesupplyductisoutsidethe
conditionedspace,thenonlytheleakagelossofthisportionistobeincluded.Thefractionof10percent,tobeadded
insuchacase,isequaltotheratioofthelengthoutsidetheconditionedspacetothetotallengthofthesupplyduct
Heat Gain from Air-Conditioning Fan
•Theheatequivalentofanair-conditioningfanhorsepowerisaddedasthesensibleheattothesystem.Ifthe
fanmotorisoutsidetheairstream,theenergylostduetotheinefficiencyofthemotorisnotaddedtotheair.
Therearetwotypesofairsupplysystems.
Draw-throughSystem
•Inthedraw-throughsystem,thefanisdrawingairthroughthecoolingcoilandsupplyingittotheconditioned
space.Thisisthemostcommonsystem.Inthissystem,thefanheatisinadditiontothesupplyairheatgain.
Theheatshould,therefore,beaddedtotheroomsensibleheat.
Blow-throughSystem
•Intheblow-throughsystem,fanblowsairthroughthecoolingcoilbeforebeingsuppliedtotheconditioned
space.Inthissystem,thefanheatisaddedaftertheroomtothereturnair.Thusthefanheatisaloadonthe
coolingcoil.Theheatshould,therefore,beaddedtothegrandtotalheat.
Thefanefficienciesareoftheorderof70percentforcentralair-conditioningplantfansandabout50percentfor
packageair-conditionerfans.
Thefanhorsepowerdependsonthequantityofairsuppliedandthepressurerise,viz.,thetotalpressure
developedbythefan.Thesupplyairquantityinturndependsonthedehumidifiedrise,whichisoftheorderof8
to14°C.Thefantotalpressuredependsonthesystempressurelosswhichcomprisesthepressuredropthrough
theductwork,grilles,filters,coolingcoil,etc.
Blow-Through Vs Draw-Through
Fan System
Heat Gain from Air-Conditioning Fan
•Oncethesupplyair-rateandpressuredevelopedareknown,thefanpowercanbecalculated.
•Butthesecannotbeknownuntiltheloadcalculationshavebeencompleted.
•Hencetheprocedureistoinitiallyassumefanheatbetween2.5and7.5percentoftheroom
sensibleheatandcheckthevalueafterthedesignhasbeencompleted.
•Designersusuallytake5%ofRSHasfanheat.
Fan pressure for different duct systems
Return Air Duct Heat and Leakage Gain
•Thecalculationoftheheatgainforreturnairductsisdoneinexactlythesame
wayasforsupplyairducts.
•Buttheleakageinthiscaseisthatofthehotandhumidoutsideairintotheduct
becauseofsuctionwithintheduct.
•Iftheductsareoutsidetheconditionedspace,aninleakageofupto3percentmay
beassumeddependingonthelengthoftheduct.
•Ifthereisonlyashortconnectionbetweentheconditioningequipmentandthe
space,thisleakagemaybeneglected.
Heat Gain from Dehumidifier Pump and Piping
•Thehorsepowerrequiredtopumpwaterthroughthedehumidifieraddsheattothesystemandisto
beconsideredlikethatofotherelectricmotors.
•Forthispurpose,pumpefficienciesmaybeassumedas50percentforsmallpumpsand70percent
forlargepumps.
•Theheatgainofdehumidifierpipingmaybecalculatedasapercentageofthegrandtotalheatas
follows:
(i)Verylittleexternalpiping:1%ofGTH.
(ii)Averageexternalpiping:2%ofGTH.
(iii)Extensiveexternalpiping:4%ofGTH.
•Itistobenotedthatallheatgainsaftertheroomarenottobeaddedtoroomheatgains,buttothe
grandtotalheatloadthatdirectlyfallsontheconditioningequipment.
•Theseincludethereturnairductheatandleakagegain,dehumidifierpumppower,dehumidifier,
andpipinglosses,asoutlinedabove,andthefansensibleheatinthecaseoftheblow-through
system.
Psychrometric Calculations For Cooling
•Figureshowstheconditionofthemixtureofthe
recirculatedroomairandventilationairenteringthe
apparatusat1,andleavingtheapparatusat2whichis
thesameasthesupplyairstates,theeffectivesurface
oftheapparatusbeingatS.
•Theconditionline1–2representsthepsychrometric
processintheair-conditioningapparatus,andhence
theGSHFline.Further,theleavingairstate2is
governedbytheBPFoftheapparatus,although,atthe
sametime,itmustlieontheRSHFlinei–2
•Accordingly,thedehumidifiedairquantitycanbe
calculatedeitherfromroomsensibleheatbalance,
viz.,processs–iintheroom
•From the total sensible heat balance,
viz., process 1–2 in the apparatus.
Building Requirements And Energy
Conservation In Air-conditioned Buildings
•Thetotalamountofenergyconsumptioninairconditioningisquitesubstantial.
•Itisknownthatonetonofrefrigerationincentralair-conditioningplantsrequires1.25kWof
powerapproximately.
•Thisisonthebasisoftheroofnotexposedtosun,andnottoomuchglassareasinthewalls.
•ThisoneTRissufficientforofficespaceof18–22.5m
2
,or12–14seatsinatheatre.
•Thus,foranofficeofapproximately1850m
2
oratheatreof1250seatingcapacity,theA/Cloadis
100TR,requiringapowerconsumptionofabout125kW.
•Thisshowsthatthepowerconsumptionissizableandthereisaneedtominimizeit.
•Further,thecostofairconditioningconstitutesabout60%ofthecostofbuilding.Hence,thea
needtocutcoolingloadstominimizethesizeoftheplant.
Building Requirements And Energy
Conservation In Air-conditioned Buildings
•Energy conservation in the air conditioning of buildings can be achieved by
adopting the following measures:
(i)Minimization of solar gain.
(ii)Other building design features and thermal properties of construction materials.
(iii)Minimizing infiltration and ventilation load.
(iv) Use of natural ventilation for cooling.
(v) Use of thermal storage.
(vi) Plant selection.
(vii) Plant maintenance.
(viii) Permitting drift in room design conditions.
Minimization of solar gain
•Solarradiationaccountsfor40–70%ofthecoolingloadinmanybuildings.
Factorsaffectingare;theorientationofthebuilding,fenestration,preventive
measurestointerceptsolarheat,etc.
•Itisconcededthatthemaximumareaofexposedwallsandwindowsshouldbein
theNorth-SouthdirectionasagainstEast-Westdirection.Thismeansthelonger
sideofthebuildingtofaceN-Sdirections.
•Further,thefollowingdesignfeatureswillconsiderablydecreasethecoolingload
duetofenestration:
(a)Reductioninglassareasonthewesternside:
TheW-glassaddsabout510W/m
2
duringthehotafternoon.Thus,6.9m
2
of
unshadedW-glasscontributes1TR.ThesameglassareaontheN-sidecontributes
only1/15TR.
Minimization of solar gain
(b)DirectsunlightonW,N-WandS-WshouldbeavoidedThiscanbedonebysuitablesunshades
whichwillpermitjustenoughlightbutlimitdirectsolarradiation.Theamountofoverhangcanbe
calculatedfrom
Overhang=FactorxShadowheight
wherethefactorrecommendedfortheperiodApril-Septemberforvariouslatitudes
(c)Usingcurtains/Venetianblindsonwindowsinsidethespace.However,externalshadingismore
effectivethaninternalshading.
(d)Indiumoxide(In
2O
3)coatedontheexternalsidereflectingglasssurfacescanbeused.
(e)Heatabsorbing/tintedglasscanbeused.
Other Building Design Features And Thermal
Properties Of Construction Materials
•Themeasuresincludethefollowing:
(a)Airisagoodinsulator.Hollowtileswithairtrappedinthemaremostideallysuitedforwalls.
Similarly,roofsandfloorscanbecastwithhollowspacefullofair.Adouble-wallconstructionwith
hollowbricksandair-gapiscommonlyusedinhotdesertareas.
(b)Roofexposedtosunmustbeinsulatedwithaminimumof5cmthickexpandedpolystyreneor
equivalentinsulation.Thiswillreducetheroofloadfrom3TRto0.1TRinthecaseof100m
2
of
concreteslab.
(c)Roofcanbepaintedwithaluminiumpainttoreflectsolarradiation.
(d)Sprayingtheroofswithwaterduringsunperiods.
(e)Useofsmallsurface-to-volume(A/V)ratio.DivisionofabuildinglikeblocksAandBseparated
asshowninFig.increasesthesurfaceareaandhencetransmissiongain.Inthesameway,itcouldbe
seenthatbuildingswithlargeraspectratioswillhavemoretransmissionheatgain.
Use of Natural Ventilation For Cooling
•WhentheoutsideWBTislowerthanroomWBTof18-20°Ccorrespondingto
roomdesignconditionsof25°CDBTand50±5%RH,theairconditioningplant
canbeshutdown,andonlynaturalventilationemployedinstead.
•Forthispurpose,largerfreshairintakeshavetobeprovidedattheplantinlet.
•SuchaconditionoccursformanydaysduringMarch-AprilandSeptember-
October,andalsoatnight.
•Ifitisresortedto,itwillresultinconsiderablepowersavingandlongerlifeofthe
plant.
Use of Thermal Storage
•Themethodinvolvestheuseofproperlysizedandheavilyinsulatedchilledwater
tankswhicharechargedatnightstoringsurplusrefrigerationwhencoolingload
demandislow,andoutsideWBTisalsolow.
•Thischilledwatercanbeusedduringthedayatthepeakloadperiod.
•ThemethodmainlyenablestheplanttooperateathigherCOPthusdecreasing
powerconsumption.Althoughitalsodecreasesthesizeoftheplant,thecapital
costisnotreducedasthecostofthetanksandinsulationisadded.
•Thissensibleheatstorageisnotreallythebestasitrequiresverylarge-sized
chilledwatertanks.
•Latentheatstorageemployingachangeofphaseofmaterialsisabettermethod.
Onesuchmaterialissodium-sulphatedecahydrate(Na
2SO
4:10H
2O)whichfreezes
at7–10°C.Thiswillrequireonly10%volumeascomparedtochilledwater.
Plant Selection
•Selecting high efficiency compressors
•Capacity control of reciprocating compressors
•Multistage compression in centrifugal compressors
•Multi-evaporators with individual or multistage compressors
•Optimal design of refrigeration and air conditioning equipment
•Most designers oversize the equipment
•Thermostat construction and adjustment
Plant Maintenance
•Cooling tower maintenance
•Removing fouling from condenser and chiller tubes
•Cleaning of air filters
•Overhauling of compressors