Machine_Learning_Algorithms__thoery.pptx

ChandrakalaV15 3 views 12 slides Mar 10, 2025
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

It contains the description of algorithms


Slide Content

Regression Algorithm: Linear Regression **Equation:** y = mx + b Linear regression models the relationship between a dependent variable (y) and an independent variable (x) using a straight line.

Linear Regression - Blank Plot

Regression Algorithm: Polynomial Regression **Equation:** y = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 Polynomial regression fits a nonlinear relationship using higher-degree polynomial functions.

Polynomial Regression - Blank Plot

Regression Algorithm: Ridge Regression **Equation:** y = X\beta + \lambda ||\beta||^2 Ridge regression adds a penalty term (λ) to linear regression to reduce overfitting and multicollinearity.

Ridge Regression - Blank Plot

Classification Algorithm: Logistic Regression **Equation:** P(y=1) = \frac{1}{1 + e^{-(b_0 + b_1x)}} Logistic regression predicts binary outcomes using the sigmoid function to map values between 0 and 1.

Logistic Regression - Blank Plot

Classification Algorithm: Decision Tree **Equation:** Uses entropy and information gain Decision trees classify data points by recursively splitting based on feature values using entropy or Gini impurity.

Decision Tree - Blank Plot

Classification Algorithm: Support Vector Machine (SVM) **Equation:** f(x) = w^T x + b SVM finds the optimal hyperplane that maximizes the margin between different classes.

Support Vector Machine (SVM) - Blank Plot
Tags