Machine Learning Ch 1.ppt

1,674 views 78 slides Oct 17, 2023
Slide 1
Slide 1 of 78
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78

About This Presentation

DBATU


Slide Content

INTRODUCTION
TO
MACHINE LEARNING
CHAPTER 1

Topics Covered
1.1 Introduction to Machine Learning
Artificial Intelligence
Machine Learning
Application of Machine Learning
1.2 Types of Machine Learning
1.3 Supervised Machine Learning
1.3.1 Classification
1.4 Unsupervised Machine Learning and its Application
1.4.1 Difference between Supervised and Unsupervised Machine
Learning
1.5 Semi-Supervised Machine Learning
1.6 Reinforcement Machine Learning and its Application
1.7 Hypothesis Space and Inductive Bias
1.8 Underfittingand Overfitting
1.9 Evaluation and Sampling Methods
1.9.1 Regression Metrics
1.9.2 Classification Metrics
1.10 Training and Test Dataset and Need of
Cross Validation
1.11 Linear Regression
1.111 Linear Models
1.12 Decision Trees
1.12.1 The Decision Tree Learning Algorithm
1.12.2 Entropy
1.12.3 Information Gain
1.124 Impurity Measures
Exercise

Introduction to Machine Learning
Machinelearningisabranchofartificialintelligence(AI)andcomputersciencewhichfocusesontheuseof
dataandalgorithmstoimitatethewaythathumanslearn,graduallyimprovingitsaccuracy.
MachineLearningisanumbrellatermusedtodescribeavarietyofdifferenttoolsandtechniqueswhich
allowamachineoracomputerprogramtolearnandimproveovertime.
MLtoolsandtechniquesincludebutarenotlimitedtoStatisticalReasoning,DataMining,Mathematicsand
Programming.
Tolearn,amachineneedsData,ProcessingPower/PerformanceandTime.Itcouldbesaidthatifamachine
getsbetteratsomethingovertimeandimprovesitsperformanceasmoredataisacquired,thenthis
machineissaidtobelearningandwecouldcallthisprocessMachineLearning.

Introduction to Machine Learning
Machines/computersanabilitytolearnthewayhumansdo,i.e.withoutexplicitlytellingthemwhattodo.
Machinelearninggivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed.
ArthurSamuel
Machinelearningreferstoteachingdevicestolearninformationgiventoadatasetwithoutmanualhuman
interference.

Well Posed Learning Problem
Awell-posedlearningproblemisataskinwhichtheInput,Output,andLearningobjectiveareclearlydefined,andthereexistsa
uniquesolutiontotheproblem.
Awell-posedlearningproblemhasthreeproperties:
1.Existence:Theproblemmusthaveatleastonesolution.Theremustbeapossiblerelationshipbetweentheinputandoutputdata.
2.Uniqueness:Theproblemmusthaveauniquesolution.Theremustbeonlyonecorrectrelationshipbetweentheinputandoutput
data.
3.Stability:Thesolutiontotheproblemmustbestablewithrespecttosmallchangesintheinputdata.Theoutputproducedbythe
machinelearningalgorithmshouldnotchangesignificantlywhentheinputdataisslightlymodified.
4.Awell-posedlearningproblemisessentialforthedevelopmentofeffectiveandreliablemachinelearningalgorithms.Withouta
well-posedproblem,thealgorithmmayproduceincorrectorunstableresults,makingitdifficulttouseinpracticalapplications.
Soitisimportanttocarefullydefinetheinput,output,andlearningobjectivewhenformulatingamachinelearning
problem.

Well Posed Learning Problem
Alearningproblemcanbedefinedasataskinwhichanagent(suchasAMachineLearning
AlgorithmoraHuman)mustlearntoperformaspecifictaskormakepredictionsbasedonasetof
inputsordata.
Threefeaturesthatcanbeidentifiedinalearningproblemare:
Inputdata:Thisreferstothesetofdataorinformationthattheagentusestolearnandmake
predictions.Theinputdatacanbestructuredorunstructured,andmaycomefromavarietyofsources
suchastext,images,audio,orsensordata.
Outputorprediction:Thisreferstothetaskthattheagentistryingtolearnorthepredictionthatitis
tryingtomakebasedontheinputdata.Theoutputcanbeasinglevalue,asetofvalues,ora
probabilitydistributionoverpossibleoutcomes.

Well Posed Learning Problem
Evaluationmetric/Performancemeasure:Thisreferstothemeasureormetricthatisusedtoevaluate
theperformanceoftheagentonthelearningtask.
Theevaluationmetricmayvarydependingonthespecificlearningproblemandmayincludemetricssuchas
Accuracy,Precision,Recall,F1Score,orMeanSquaredError.
Definition:-
AcomputerprogramissaidtolearnfromexperienceEwithrespecttosomeclassoftasksTand
performancemeasureP,ifitsperformanceattasksinT,asmeasuredbyP,improveswithexperienceE.
TomMitchell

Examples of well-posed learning problems:
2.Sentimentanalysis:Givenasetoftextdocuments,
Task:-Istolearnamodelthatcanpredictthesentiment
ofnewdocuments(e.g.,positive,negative,orneutral).
Input:-Isthetextdata,
Output:-Isthesentimentlabel
Learningobjective:-Istominimizethepredictionerror.
PerformanceMeasure:-Percentageofpredictionof
thesentimentsofnewdocuments.
TrainingExperience:-Adatabaseofsentimentsof
givendocuments.
1.Imageclassification:Givenasetoflabeledimages,
Task:-IstolearnamodelthatcanCorrectlyclassify
newimagesintotheirrespectiveclasses.
Input:-Istheimagedata
Output:-Istheclasslabel,
Learningobjective:-IstoMinimizetheClassification
Error.
PerformanceMeasure:-Percentageofimages
correctlyclassified.
TrainingExperience:-ADatabaseofimageswith
givenclassification

Examples of well-posed learning problems:
3.Frauddetection:Givenasetoftransactiondata,
Task:-Istolearnamodelthatcanidentifyfraudulenttransactions.
Input:-Isthetransactiondata
Output:-Isabinarylabel(fraudulentornot),
Learningobjective:-Istominimizethefalsepositiveandfalse
negativerates.
PerformanceMeasure:-PercentageofFalsePositiveandFalse
NegativeRates.
4.Regression:Givenasetofinputfeaturesandcorrespondingtarget
values,
Task:-Taskistolearnamodelthatcanpredictthetargetvaluefor
newinputdata
Input:-Isthefeaturedata
Output:-Isthetargetvalue,
Learningobjective:-Istominimizethepredictionerror(e.g.,mean
squarederror).
PerformanceMeasure:-Percentageofthepredictionerror.

History of Machine Learning
Year1950:AlanTuringdevelopedtheTuringTestduringthisyear.
Year1957:Perceptron-ThefirsteverNeuralNetwork
Year1960:MITdevelopedaNaturalLanguageProcessingprogramtoactasatherapist.TheprogramwascalledELIZA.
Year1967:TheadventofNearestNeighboralgorithm,veryprominentlyusedinSearchandApproximation
Year1970:Backpropagationtakesshape.BackpropagationisasetofalgorithmsusedextensivelyinDeepLearning.
Year1980:KunihikoFukushimasuccessfullybuiltamultilayeredNeuralNetworkcalledANN.
Year1981:ExplanationBasedLearning
Year1989:ReinforcementLearningisfinallyrealized.Q-Learningalgorithm.
Year2009:ImageNet
Year2010:GoogleBrainandFacebook'sDeepFace
Year2022:ChatGPTChatGenerativePre-trainedTransformer
https://www.zeolearn.com/magazine/what-is-machine-learning

Artificial Intelligence vs. Machine Learning vs. Deep Learning vs. Neural
Networks
Machinelearning,Deeplearning,andNeuralnetworksareallsub-fieldsofArtificialIntelligence.
Neuralnetworksisasub-fieldofMachinelearning,andDeeplearning.
Deep"Machinelearningcanuselabeleddatasets,alsoknownasSupervisedlearning.Eliminatessomeofthe
humaninterventionrequiredandenablestheuseoflargerdatasets.
“Non-deep",Machinelearningismoredependentonhumaninterventiontolearn.Humanexpertsdetermine
thesetoffeaturestounderstandthedifferencesbetweendatainputs,requiringmorestructureddatatolearn.
Neuralnetworks,orartificialneuralnetworks(ANNs),arecomprisedofnodelayers,containinganinputlayer,
oneormorehiddenlayers,andanoutputlayer.Eachnode,orartificialneuron,connectstoanotherandhasan
associatedweightandthreshold.
DeeplearningandNeuralNetworksareaccelerateprogressinareassuchascomputervision,naturallanguage
processing,andspeechrecognition.

Artificial Intelligence vs. Machine Learning vs. Deep Learning vs.
Neural Networks
AIreferstothesoftwareandprocessesthataredesignedtomimicthewayhumansthinkandprocess
information.Itincludescomputervision,naturallanguageprocessing,robotics,autonomousvehicleoperating
systems,andmachinelearning.
Withthehelpofartificialintelligence,Devicesareabletolearnandidentifyinformationinordertosolve
problemsandofferkeyinsightsintovariousdomains.

Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
AIenablesmachinestounderstanddataandmakedecisionsbasedonpatternshidden
indatawithoutanyhumanintervention.
Machinesadjusttheirknowledgebasedonnewinputs.
Example,Self-drivingcars,AlexaandCortana-Conversationswithusinournatural
humanlanguage
MachineLearning:-SubsetofAI
Machinelearningwiththehelpofthealgorithmcanprocessthesurplusof
informationandoutputanaccuratepredictionwithinmoments.Usedeeplearningall
thetime.
Usesstatisticalmodelstoexplore,analyzeandfindpatternsinlargeamountsof
data.
Performtaskswithoutbeingexplicitlyprogrammed,allowsthemtolearnfrom
experienceandimproveovertimewithouthumanintervention.
https://learnerjoy.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-vs-data-science/

Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
Approaches:-1.Supervisedlearning,2.Unsupervisedlearningand3.
Reinforcementlearning.
1.Supervisedlearning:-Requiresahumantoinputlabelleddata/Past
Labeleddataintothemachineandoutputsapredictionofanewsample.
2.Unsupervisedlearning:-Takesunlabeleddataasinput,groupsthe
databasedonitssimilarityandoutputsclustersofsimilarsamplesforthe
humantoanalyzefurtherreinforcement.O/pNotknown.Algorithms-L-
means,HierarchicalClustering,PCA,NeuralNetwork.
3.Reinforcementlearning.:-Reinforcementlearningisalsoknownas
semi-supervisedlearning.Asmallamountoflabeleddataandalarge
amountofunlabeleddataandutilizesarewardortrialanderrorsystem
tolearnovertime.GoodActionandBadAction

Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
DeepLearning-Deeplearningisthesubsetofmachinelearning.
Themainideabehinddeeplearningismachinestolearnthingslikethehuman
brain.
Humanbrainismadeofmultitudesofneuronsthatallowustooperatetheway
wedo.
Thecollectionofconnectedneuronsinahumanbrain,scientistscreateamulti-
layernetworkthatmachinescouldusetolearnfromexperienceandpredict.
Techniques
ArtificialNeuralNetworks(ANN):-I/PintheformofNumbers
ConvolutionalNeuralNetworks(CNN):-I/PintheformofImages
Recurrentneuralnetworks(RNN).I/PintheformofTimeSeriesData
Two popular frameworks used in Deep learning are
•PyTorch by Facebook
•TensorFlow by Google

Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
DataScience
Datascienceistoperformexploratoryanalysistobetterunderstand
thedata.
ItplaysahugerolewhenbuildingMLmodels.Ifyouhaveahuge
amountofdata,youwillgetmoreinsightsfromdataandaccurate
resultsthatcanbeappliedtobusinessusecases.
Statisticaltools–Linearalgebra

Tags