Topics Covered
1.1 Introduction to Machine Learning
Artificial Intelligence
Machine Learning
Application of Machine Learning
1.2 Types of Machine Learning
1.3 Supervised Machine Learning
1.3.1 Classification
1.4 Unsupervised Machine Learning and its Application
1.4.1 Difference between Supervised and Unsupervised Machine
Learning
1.5 Semi-Supervised Machine Learning
1.6 Reinforcement Machine Learning and its Application
1.7 Hypothesis Space and Inductive Bias
1.8 Underfittingand Overfitting
1.9 Evaluation and Sampling Methods
1.9.1 Regression Metrics
1.9.2 Classification Metrics
1.10 Training and Test Dataset and Need of
Cross Validation
1.11 Linear Regression
1.111 Linear Models
1.12 Decision Trees
1.12.1 The Decision Tree Learning Algorithm
1.12.2 Entropy
1.12.3 Information Gain
1.124 Impurity Measures
Exercise
History of Machine Learning
Year1950:AlanTuringdevelopedtheTuringTestduringthisyear.
Year1957:Perceptron-ThefirsteverNeuralNetwork
Year1960:MITdevelopedaNaturalLanguageProcessingprogramtoactasatherapist.TheprogramwascalledELIZA.
Year1967:TheadventofNearestNeighboralgorithm,veryprominentlyusedinSearchandApproximation
Year1970:Backpropagationtakesshape.BackpropagationisasetofalgorithmsusedextensivelyinDeepLearning.
Year1980:KunihikoFukushimasuccessfullybuiltamultilayeredNeuralNetworkcalledANN.
Year1981:ExplanationBasedLearning
Year1989:ReinforcementLearningisfinallyrealized.Q-Learningalgorithm.
Year2009:ImageNet
Year2010:GoogleBrainandFacebook'sDeepFace
Year2022:ChatGPTChatGenerativePre-trainedTransformer
https://www.zeolearn.com/magazine/what-is-machine-learning
Artificial Intelligence vs. Machine Learning vs. Deep Learning vs. Neural
Networks
Machinelearning,Deeplearning,andNeuralnetworksareallsub-fieldsofArtificialIntelligence.
Neuralnetworksisasub-fieldofMachinelearning,andDeeplearning.
Deep"Machinelearningcanuselabeleddatasets,alsoknownasSupervisedlearning.Eliminatessomeofthe
humaninterventionrequiredandenablestheuseoflargerdatasets.
“Non-deep",Machinelearningismoredependentonhumaninterventiontolearn.Humanexpertsdetermine
thesetoffeaturestounderstandthedifferencesbetweendatainputs,requiringmorestructureddatatolearn.
Neuralnetworks,orartificialneuralnetworks(ANNs),arecomprisedofnodelayers,containinganinputlayer,
oneormorehiddenlayers,andanoutputlayer.Eachnode,orartificialneuron,connectstoanotherandhasan
associatedweightandthreshold.
DeeplearningandNeuralNetworksareaccelerateprogressinareassuchascomputervision,naturallanguage
processing,andspeechrecognition.
Artificial Intelligence vs. Machine Learning vs. Deep Learning vs.
Neural Networks
AIreferstothesoftwareandprocessesthataredesignedtomimicthewayhumansthinkandprocess
information.Itincludescomputervision,naturallanguageprocessing,robotics,autonomousvehicleoperating
systems,andmachinelearning.
Withthehelpofartificialintelligence,Devicesareabletolearnandidentifyinformationinordertosolve
problemsandofferkeyinsightsintovariousdomains.
Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
AIenablesmachinestounderstanddataandmakedecisionsbasedonpatternshidden
indatawithoutanyhumanintervention.
Machinesadjusttheirknowledgebasedonnewinputs.
Example,Self-drivingcars,AlexaandCortana-Conversationswithusinournatural
humanlanguage
MachineLearning:-SubsetofAI
Machinelearningwiththehelpofthealgorithmcanprocessthesurplusof
informationandoutputanaccuratepredictionwithinmoments.Usedeeplearningall
thetime.
Usesstatisticalmodelstoexplore,analyzeandfindpatternsinlargeamountsof
data.
Performtaskswithoutbeingexplicitlyprogrammed,allowsthemtolearnfrom
experienceandimproveovertimewithouthumanintervention.
https://learnerjoy.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-vs-data-science/
Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
Approaches:-1.Supervisedlearning,2.Unsupervisedlearningand3.
Reinforcementlearning.
1.Supervisedlearning:-Requiresahumantoinputlabelleddata/Past
Labeleddataintothemachineandoutputsapredictionofanewsample.
2.Unsupervisedlearning:-Takesunlabeleddataasinput,groupsthe
databasedonitssimilarityandoutputsclustersofsimilarsamplesforthe
humantoanalyzefurtherreinforcement.O/pNotknown.Algorithms-L-
means,HierarchicalClustering,PCA,NeuralNetwork.
3.Reinforcementlearning.:-Reinforcementlearningisalsoknownas
semi-supervisedlearning.Asmallamountoflabeleddataandalarge
amountofunlabeleddataandutilizesarewardortrialanderrorsystem
tolearnovertime.GoodActionandBadAction
Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
DeepLearning-Deeplearningisthesubsetofmachinelearning.
Themainideabehinddeeplearningismachinestolearnthingslikethehuman
brain.
Humanbrainismadeofmultitudesofneuronsthatallowustooperatetheway
wedo.
Thecollectionofconnectedneuronsinahumanbrain,scientistscreateamulti-
layernetworkthatmachinescouldusetolearnfromexperienceandpredict.
Techniques
ArtificialNeuralNetworks(ANN):-I/PintheformofNumbers
ConvolutionalNeuralNetworks(CNN):-I/PintheformofImages
Recurrentneuralnetworks(RNN).I/PintheformofTimeSeriesData
Two popular frameworks used in Deep learning are
•PyTorch by Facebook
•TensorFlow by Google
Artificial Intelligence vs. Machine Learning vs. Deep
Learning vs. Neural Networks
DataScience
Datascienceistoperformexploratoryanalysistobetterunderstand
thedata.
ItplaysahugerolewhenbuildingMLmodels.Ifyouhaveahuge
amountofdata,youwillgetmoreinsightsfromdataandaccurate
resultsthatcanbeappliedtobusinessusecases.
Statisticaltools–Linearalgebra