American Journal of Humanities and Social Sciences Research (AJHSSR) 2025
A J H S S R J o u r n a l P a g e | 430
REFERENCES
[1] Adrian, T., & Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106(7), 1705–1741.
https://doi.org/10.1257/aer.20120555
[2] Ahelegbey, D. F., McMillin, W. D., & Stengos, T. (2019). Network effects in credit risk.
[3] Journal of Applied Econometrics, 34(5), 699–715. https://doi.org/10.1002/jae.2693 Baesens, B., Van Vlasselaer,
V., & Verbeke, W. (2016). Analytics in credit risk modeling. Wiley.
[4] Basel Committee on Banking Supervision. (2023). Basel III: Finalising post-crisis reforms. Bank for
International Settlements. https://www.bis.org
[5] Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable AI in credit risk management.
Frontiers in Artificial Intelligence, 4, 688463. https://doi.org/10.3389/frai.2021.688463
[6] Das, S. R., Duffie, D., Kapadia, N., & Saita, L. (2007). Common failings: How corporate defaults are correlated.
The Journal of Finance, 62(1), 93–117. https://doi.org/10.1111/j.1540-6261.2007.01203.x
[7] Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep direct reinforcement learning for financial signal
representation and trading. IEEE Transactions on Neural Networks and Learning Systems, 28(3),
653–664. https://doi.org/10.1109/TNNLS.2016.2522401
[8] Duffie, D., Filipović, D., & Schachermayer, W. (2021). Credit risk modeling with machine learning:
Implications and challenges. Journal of Financial Econometrics, 19 (1), 1–34.
https://doi.org/10.1093/jjfinec/nbz012
[9] EBA. (2021). Guidelines on loan origination and monitoring. European Banking Authority.
https://www.eba.europa.eu
[10] Finger, C. (2001). A comparison of stochastic default models. RiskMetrics Journal, 2(1), 1–34.
[11] Giese, G., Lee, L. E., Melas, D., Nagy, Z., & Nishikawa, L. (2019). Foundations of ESG investing: How ESG
affects equity valuation, risk, and performance. The Journal of Portfolio Management, 45(5), 69–83.
https://doi.org/10.3905/jpm.2019.45.5.069
[12] Glasserman, P., & Xu, X. (2014). Robust risk measurement and model risk. Quantitative Finance, 14(1), 29–
58. https://doi.org/10.1080/14697688.2013.822997
[13] Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355.
https://doi.org/10.1038/nature09659
[14] Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines.
[15] Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
[16] JP Morgan. (1997). CreditMetrics Technical Document. JP Morgan RiskMetrics.
[17] Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning
algorithms. Journal of Banking & Finance, 34(11), 2767–2787. https://doi.org/10.1016/j.jbankfin.2010.06.001
[18] Kou, G., Xu, Y., Peng, Y., & Shen, F. (2021). Machine learning in financial risk management: A literature
review. International Review of Financial Analysis, 71, 101422. https://doi.org/10.1016/j.irfa.2020.101422
[19] Kotsantonis, S., & Serafeim, G. (2019). Four things no one will tell you about ESG data. Journal of Applied
Corporate Finance, 31(2), 50–58. https://doi.org/10.1111/jacf.12346
[20] Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state- of-the-art classification
algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–
136. https://doi.org/10.1016/j.ejor.2015.05.030
[21] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.
https://arxiv.org/abs/1701.07274
[22] Li, F., Wang, C., & Xu, G. (2020). ESG and corporate financial performance: Evidence from China.
Sustainability, 12(19), 7916. https://doi.org/10.3390/su12197916
[23] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE
Transactions on Knowledge and Data Engineering, 31 (12), 2346–2363.
https://doi.org/10.1109/TKDE.2018.2876857
[24] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7 (1), 77–91.
https://doi.org/10.2307/2975974
[25] Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of
Finance, 29(2), 449–470. https://doi.org/10.2307/2978814
[26] Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.
[27] Rudin, C. (2019). Stop explaining black box machine learning models for high-stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-
0048-x
[28] Saunders, A., & Allen, L. (2020). Credit risk management in and out of the financial crisis: New approaches
to value at risk and other paradigms (3rd ed.). Wiley Finance.
[29] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
[30] Zhou, Z., Pan, Y., Wang, H., & Wang, B. (2021). A hybrid artificial intelligence model for credit risk
evaluation. Expert Systems with Applications, 183, 115348. https://doi.org/10.1016/j.eswa.2021.115348