364 Chapter10Mats
50m
10.4StructuralDesign
10.4STRUCTURAL DESIGN
365
Figure10.11MatfoundationforExample10.1.
Computetheareaofeachzone:
A,=(25m)(15m) =375m2
A{j=(37.5m)(22.5m)-(25m)(15m) =469m2
Ac=(50m)(30m)-(37.5m)(22.5m) =656m2
37.5m
25m
ZoncA
15m22.5In
ZoneB
ZoneC
30
m
GeneralMethodology
Thestructuraldesignofmatfoundationsmustsatisfybothstrengthandserviceabilityre
quirements.Thisrequirestwoseparateanalyses,asfollows:
StepI:Evaluatethestrengthrequirementsusingthefactoredloads(Equations
2.7
2.15)andLRFDdesignmethods(whichACIcallsultimatestrengthdesign).
Thematmusthaveasufficientthickness,T,andreinforcementtosafelyresist
theseloads.Aswithspreadfootings,Tshouldbelargeenoughthatnoshearre
inforcementisneeded.
Step2:Evaluatematdeformations(whichistheprimaryserviceabilityrequirement)
usingtheunfactoredloads(Equations2.1-2.4).Thesedeformationsarethere
sultofconcentratedloadingatthecolumnlocations,possiblenon-uniformities
inthemat,andvariationsinthesoilstiffness.Ineffect,thesedeformationsare
theequivalentofdifferentialsettlement.Iftheyareexcessive,thenthematmust
bemadestifferbyincreasingitsthickness.
Closed-FormSolutions
Computethedesignk,values:
A,(k,)A+An(k,){j+Ac(k,)c=(A.+ AB+Ac)(k,),,,,
375(k,)A
+469(1.5)(k,),+656(2)(k,)A=1500(k,L"
2390(k,)A
=1500(k,),,,,
(k,)A=0.627(k,),,,g
Becauseitissodifficulttodevelopaccurate k,.values,itmaybeappropriatetocon
ductaparametricstudiestoevaluateitseffectonthematdesign.ACI(1993)suggests
varyingk,fromone-halfthecomputedvaluetofiveortentimesthecomputedvalue,and
basingthestructuraldesignontheworstcasecondition.
Thiswiderangein
k,.valueswillproduceproportionalchangesinthecomputed
totalsettlement.However,weignorethesetotalsettlementcomputationsbecausetheyare
notreliableanyway,andcomputeitusingthemethodsdescribedinChapter7.These
changesin
k,.havemuchlessimpactontheshears,moments,anddeflectionsinthemat,
andthushaveonlyasmallimpactonthestructuraldesign.
(k,)A=(0.627)(4000kN/m-') =2510kN/m3
(k,)n=(1.,5)(0.627)(4000kN/m-') =3765kN/m3
(k,)c
=(2)(0.627)(4000kN/m') =5020kN/m3
0(=Answer
0(=Answer
0(=Answer
---1
WhentheWinklermethodisused(i.e.,whenall"springs"havethesame k,.)andthe
geometryoftheproblemcanberepresentedintwo-dimensions,itispossibletodevelop
closed-formsolutionsusingtheprinciplesofstructuralmechanics(Scott,1981;Hetenyi,
1974).Thesesolutionsproducevaluesofshear,moment,anddeflectionatallpointsin
theidealizedfoundation.Whentheloadingiscomplex,theprincipleofsuperpositionmay
beusedtodividetheproblemintomultiplesimplerproblems.
Theseclosed-formsolutionswereonceverypopular,becausetheyweretheonly
practicalmeansofsolvingthisproblem.However,theadventandwidespreadavailability
ofpowerfulcomputersandtheassociatedsoftwarenowallowsustouseothermethods
thataremorepreciseandmoreflexible.
FiniteElementMethod
Today,mostmatfoundationsaredesignedwiththeaidofacomputerusingthefiniteele
mentmethod(FEM).Thismethoddividesthematintohundredsorperhapsthousandsof
elements,asshowninFigure10.12.Eachelementhascertaindefineddimensions,aspec
ifiedstiffnessandstrength(whichmaybedefinedintermsofconcreteandsteelproper
ties)andisconnectedtotheadjacentelementsinaspecifiedway.
Thematelementsareconnectedtothegroundthroughaseriesof"springs,"which
aredefinedusingthecoefficientofsubgradereaction.Typically,onespringislocatedat
eachcornerofeachelement.
Theloadsonthematincludetheexternallyappliedcolumnloads,appliedlineloads,
appliedarealoads,andtheweightofthematitself.Theseloadspressthematdownward,