Mathematical Models and the Fractional Multiverse - Part-II.pdf

mzafarullah 12 views 24 slides Oct 02, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

The Harmonic Oscillator: integer order x fractional order


Slide Content

The Harmonic Oscillator: integer order x fractional order
P(t) =
W
0
(t)
W(t)
;Q(t) =
W2(t)
W(t)
;

The Harmonic Oscillator: integer order x fractional order
Int= 0 W(0) = 1 W
0
(0) = 0
t!0
+
W2(t) = +1.
Asymptotic behavior,jt

j ! 1, the expressionsW(t),W
0
(t) W2(t)
behave in the ways
1
t
2,
1
t
2+1and
1
t
2+2respectively according to the
asymptotic property of the Mittag-Leer Function. Thus, we can use the
Mellin Transform on these functionsW(t),W
0
(t) andW2(t). Doing
s=+ 1 we obtain a value that will be the equivalent of fractional
moments-(), for these functions.
M(s) =
Z
1
0
f(t)t
s1
dt
W=
Z
1
0
t

W(t)dt;W
0
=
Z
1
0
t

W
0
(t)dt;W2=
Z
1
0
t

W2(t)dt:
p=
W
0
W
; q=
W2
W
:

The Harmonic Oscillator: integer order x fractional order
P(t) =
W
0
(t)
W(t)
;p=
W
0
W
; Q(t) =
W2(t)
W(t)
;q=
W2
W
:

The Harmonic Oscillator: integer order x fractional order
P(t) =
W
0
(t)
W(t)
;p=
W
0
W
; Q(t) =
W2(t)
W(t)
;q=
W2
W
:

The Harmonic Oscillator: integer order x fractional order
In all cases we will useq= 1 and!= 1:
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0
D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0
D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0
D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0
D

ty+y= 0

The Harmonic Oscillator: integer order x fractional order
EDO-(p;1) :y
00
+py
0
+y= 0EDF-:
C
0
D

ty+y= 0
EDO-(pf;1) :y
00
+pfy
0
+y= 0EDF-:
C
0
D

ty+y= 0

1927 - The Year: "Essentially, all models are wrong, but
some are useful." (George Box)

March 6, 1927 - In Great Britain, around 1000 people die
each week thanks to a u epidemic.
W.O. Kermack & A.G. McKendrick. Contributions to the
mathematical theory of epidemics{I. Proceedins of the
Royal Society, Vol. 115A, pp. 700{721 (1927).

Epidemic Model - SIR and two guidelines
Classic Case with vital dynamics: [tempo]
1
dS(t)
dt
=N
S(t)
N
I(t)S(t)
dI(t)
dt
=
S(t)
N
I(t)I(t)I(t)
dR(t)
dt
= I(t)R(t)
N= S(t) +I(t) +R(t)
Construct a Fractional SIR model respecting the construction
of W.O. Kermack & A.G. McKendrick.
Dierent fractional orders in compartments.
Two types of Fractional Models: Caputo(99%) and
Riemann-Liouville(1%).

Model SIR-Caputo: S(t)+I(t)+R(t)=N
Correction of the units of the Model parameters.
Case-1: [tempo]

D

S(t) =N
S(t)
N
I(t)S(t)
D

I(t) =
S(t)
N
I(t)I(t)I(t)
D

R(t) = I(t)R(t)
Case-2: [tempo]

D

S(t) =

N
S(t)
N
I(t)

S(t)
D

I(t) =
S(t)
N
I(t)

I(t)

I(t)
D

R(t) =

I(t)

R(t)
Dokoumetzidis, Magin and Macheras, A commentary on
fractionalization of multi-compartmental models, Journal of
pharmacokinetics and pharmacodynamics, 2010.

Model SIR:16=26=3and N(t)= S(t)+I(t)+R(t)
D
1
S(t) =
1
S(t)
N
I(t)
D
2
I(t) =
2
S(t)
N
I(t)
2
I(t)
D
3
R(t) =
3
I(t)
Dierent ow between compartments and
dN(t)
dt
6= 0.
N(t) =N0+
Z
t
0

2(t)
21
(2)

1(t)
11
(1)

S()
N
I()d
+
Z
t
0

3(t)
31
(3)

2(t)
21
(2)

I()d
If1=2=3then
dN(t)
dt
= 0.

Parameters, constant population, ow direction

The sign of the fractional derivative does not imply
monotonicity

The sign of the fractional derivative does not imply
monotonicity
Diethelm, K.: Monotonicity of functions and sign changes of their
Caputo derivatives. Fract. Calc. Appl. Anal. 19(2), 561{566 (2016).

Limitations and applications in a fractional Barbalat's
Lemma

Barbalat's Classic Lemma.

Barbalat's lemma in integral form: Classical x Fractional.

Fractional Barbalat Lemma Limitation.
Tags