Maximizing Missile Flight Performance.ppt

imecherif2016 225 views 70 slides Oct 19, 2024
Slide 1
Slide 1 of 70
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70

About This Presentation

missile propulsion and effeciency for flight aerodynamics.


Slide Content

10/19/24 ELF 1
Eugene L. Fleeman
Senior Technical Advisor
Georgia Institute of Technology
Maximizing Missile Flight Performance

10/19/24 ELF 2
Outline
Parameters and Technologies That Drive Missile Flight
Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance ( Workshop )
Summary

10/19/24 ELF 3
Parameters That Drive Missile Flight
Performance
Nose Fineness
Diameter
Propellant / Fuel
Wing Geometry / Size
Stabilizer
Geometry / Size
Flight Control
Geometry / Size
Length
Thrust
Profile
Flight Conditions ( , M, h )

10/19/24 ELF 4
Small Diameter Missiles Have Low Drag
10
100
1000
10000
100000
4 8 12 16 20
d, Diameter, inches
D

/
C
D
,
D
r
a
g
/
D
r
a
g

C
o
e
f
f
i
c
i
e
n
t
,

l
b
.
.
Dynamic Pressure =
1,000 psf
Dynamic Pressure =
5,000 psf
Dynamic Pressure =
10,000 psf
Example for Rocket Baseline:
d = 8 inches = 0.667 ft
Mach 2, h = 20K ft, ( C
D
0
)
Powered
= 0.95
q = 1/2  V
2
= 1/2  ( M a )
2

= 1/2 ( 0.001267 ) [( 2 ) ( 1037 )]
2
= 2,725 psf
D
0
/ C
D
0
= 0.785 ( 2725 ) ( 0.667 )
2
= 952
D
0 = 0.95 ( 952 ) = 900 lb
D = C
D
q S
Ref
= 0.785 C
D
q d
2
Note: D = drag in lb, C
D
= drag coefficient, q = dynamic pressure in psf,
d = diameter ( reference length ) in ft

10/19/24 ELF 5
Supersonic Drag Is Driven by Nose Fineness
While Subsonic Drag is Driven by Skin Friction
0.01
0.1
1
10
0 1 2 3 4 5
M, Mach Number
(CD0)Body,Wave;
lN / d = 0.5
(CD0)Body,Wave;
lN / d = 1
(CD0)Body,Wave;
lN / d = 2
(CD0)Body,Wave;
lN / d = 5
(CD)Base,Coast
Example for Rocket Baseline:
( C
D
0
)
Body, Wave
( C
D
0
)
Body, Friction
( C
D
)
Base
l
N
/ d = 2.4, A
e
= 11.22 in
2
, S
Ref
= 50.26 in
2
, M =
2, h = 20K ft, q = 2725 psf, l / d = 18, l = 12 ft
( C
D
0
)
Body, Wave
= 0.14
( C
D
)
Base

Coast
= 0.25 / 2 = 0.13
( C
D )
Base Powered = ( 1 - 0.223 ) ( 0.25 / 2 ) = 0.10
( C
D
0
)
Body, Friction
= 0.053 ( 18 ) { ( 2 ) / [( 2725 )
( 12 ) ]}
0.2
= 0.14
( C
D
0
)
Body, Coast = 0.14 + 0.13 + 0.14 = 0.41
( C
D
0
)
Body, Powered
= 0.14 + 0.10 + 0.14 = 0.38
( C
D
0
)
Body, Wave = ( 1.59 + 1.83 / M
2
) { tan
-1
[ 0.5 / ( l
N / d )]}
1.69
, for M > 1. Based on Bonney reference, tan
-1
in rad.

( C
D
0
)
Base,Coast
= 0.25 / M, if M > 1 and (C
D
0
)
Base,Coast
= ( 0.12 + 0.13 M
2
), if M < 1
( C
D
0
)
Base,Powered
= ( 1 – A
e
/ S
Ref
) ( 0.25 / M ), if M > 1 and ( C
D
0
)
Base,Powered
= ( 1 – A
e
/ S
Ref
) ( 0.12 + 0.13 M
2
), if M < 1
(C
D
0

)
Body,Friction
= 0.053 ( l / d ) [ M / ( q l )]
0.2
. Based on Jerger reference, turbulent boundary layer, q in psf, l in ft.
( C
D
0
)
Body
= ( C
D
0
)
Body, Wave
+ ( C
D
0
)
Base
+ (C
D
0

)
Body,Friction
Note: ( C
D
0
)
Body,Wave
= body zero-lift wave drag coefficient, ( C
D
0
)
Base
= body base drag coefficient, ( C
D
0
)
Body, Friction
= body skin
friction drag coefficient, ( C
D
0
)
Body = body zero-lift drag coefficient, l
N = nose length, d = missile diameter, l = missile body length,
A
e = nozzle exit area, S
Ref = reference area, q = dynamic pressure, tan
-1
[ 0.5 / ( l
N / d )] in rad

10/19/24 ELF 6
Lifting Body Has Higher Normal Force
C
N,
Example
Normal
Force
Coefficient
for l / d = 20
150
100
50
0
0 20 40 60 80 100
, Angle of Attack, Deg

2a
2b
a / b = 3
a / b = 2
a / b = 1
Note:
If  negative, C
N
negative
Based on slender body theory ( Pitts, et al ) and cross flow theory ( Jorgensen ) references
Example l / d = length / diameter = 20
d = 2 ( a b )
1/2
 = 0°
 C
N  = [( a / b ) cos  + ( b / a ) sin  ] [ sin ( 2 ) cos (  / 2 )  + 2 ( l / d ) sin
2
 ]
C
N

10/19/24 ELF 7
Large Surface Area Increases Normal Force and
Maneuverability
0
0.5
1
1.5
2
2.5
3
3.5
0 30 60 90
M < 1.35, based on slender wing theory + Newtonian impact theory
M = 2, based on linear wing theory + Newtonian impact theory
M = 5, based on linear wing theory + Newtonian impact theory
(
C
N
)
W
in
g
S
R
E
F
/ S
W
,
W
in
g
N
o
r
m
a
l F
o
r
c
e
C
o
e
f
f
ic
ie
n
t

f
o
r
R
o
c
k
e
t
B
a
s
e
lin
e
’ = 
W =  +  , Wing Effective Angle of Attack, Deg
( C
N
)
Wing
 = [ 4sin ’ cos ’ / ( M
2
– 1 )
1/2
+ 2 sin
2
’ ] ( S
W
/ S
Ref
), if M > { 1 + [ 8 / (  A )]
2
}
1/2
( C
N
)
Wing
 = [ (  A / 2) sin ’ cos ’ + 2 sin
2
’ ] ( S
W
/ S
Ref
), if M < { 1 + [ 8 / (  A )]
2
}
1/2
Note: Linear wing theory applicable if M > { 1 + [ 8 / (  A )]
2
}
1/2
, slender wing theory applicable if M < { 1 + [ 8 / (  A )]
2
}
1/2
,
A = Aspect Ratio, S
W = Wing Planform Area, S
Ref = Reference Area
Example for Rocket Baseline
A
W
= 2.82
S
W
= 2.55 ft
2
S
Ref
= 0.349 ft
2
 = 13 deg,  = 9 deg
M = 2
{ 1 +[ 8 / (  A )]
2
}
1/2
= 1.35
Since M > 1.35, use linear wing
theory + Newtonian theory
’ = 
W =  +  = 22
( C
N )
Wing S
Ref / S
W = [ 4 sin 22
cos 22 / ( 2
2
– 1 )
1/2
+ 2 sin
2
22] =
1.083
( C
N )
Wing = 1.08 ( 2.55 ) / 0.349 =
7.91

10/19/24 ELF 8
Wing Skin Friction Drag Is Larger Than Shock
Wave Drag for a Thin Wing
0
0.005
0.01
0.015
0.02
100 1000 10000
q, Dynamic Pressure, psf
M / cmac = 0.01 / ftM / cmac = 0.1 / ft
M / cmac = 1 / ftM / cmac = 10 / ft
( C
D
0
)
Wing,Friction
= n
W
{ 0.0133 [ M / ( q c
mac
)]
0.2
} ( 2 S
W
/ S
Ref
), based on Jerger, turbulent, q in psf, c
mac
in ft
( C
D
O
)
Wing,Wave
= n
W
[ 2 / (  M

LE
2
)]{{[(  + 1 ) M

LE
2
] / 2 }
 / (

- 1 )
{(  + 1 ) / [ 2  M

LE
2
– (  - 1 )]}
1 / (  - 1 )
– 1 } sin
2


LE
cos 
LE
t
mac
b / S
Ref
, based on Newtonian impact theory
( C
D
O
)
Wing
= ( C
D
O
)
Wing,Wave
+ ( C
D
O
)
Wing,Friction

n
W
= number of wings ( cruciform = 2 )
q = dynamic pressure in psf
c
mac
= length of mean aero chord in ft
 = Specific heat ratio = 1.4
M

LE
= M cos 
LE = Mach number  leading edge

LE = leading edge section total angle

LE = leading edge sweep angle
t
mac = max thickness of mac
b = span
Example for Rocket Baseline Wing:
n
W
= 2, h = 20K ft ( q = 2,725 psf ), c
mac
= 1.108 ft, S
Ref

= 50.26 in
2
, S
W
= 367 in
2
, 
LE
= 10.01 deg, 
LE
= 45 deg,
t
mac
= 0.585 in, b = 32.2 in, M

= 2 ( M

LE
= 1.41 )
( C
D
O
)
Wing,Friction
S
Ref
/ [ n
W
S
W
] = 2 {( 0.0133 ) { 2 /
[( 2725 ) ( 1.108 )]}
0.2
} = 0.00615
( C
D
0
)
Wing,Friction = 0.00615 ( 2 ) ( 367 ) / 50.26 = 0.090
( C
D
0
)
Wing,Wave = 0.024
( C
D
O
)
Wing = 0.024 + 0.090 = 0.11
(
C
D
0
)
W
in
g
,F
r
ic
t
io
n
S
R
e
f / (
n
W
S
W
)

10/19/24 ELF 9
Relaxed Static Margin Allows Higher Trim Angle
of Attack and Higher Normal Force
C
N, Trim
, Trimmed Normal
Force Coefficient of
Rocket Baseline
0 4 8 12 16 20 24
16
12
8
4
0


Trim
Trim Angle of Attack, Deg
Note: Rocket Baseline
X
CG
= 75.7 in.
Mach 2
(  +  )
Max = 21.8 Deg, ( C
N
Trim
)
Max
 /  = 0.75, ( Static Margin = 0.88 Diam )
 /  = 1.5, ( SM = 0.43 Diam )
 /  = , ( SM = 0 )

10/19/24 ELF 10
Scramjet
High Specific Impulse Provides Higher Thrust and
Reduces Fuel Consumption
Turbojet
Ramjet
Solid Rocket
4,000
3,000
2,000
1,000
0
T
h
r
u
s
t
/ (
F
u
e
l F
lo
w
R
a
t
e
)
, S
p
e
c
if
ic
Im
p
u
ls
e
, I
S
P
, S
e
c
o
n
d
s
0 2 4 6 8 10 12
Mach Number
Ducted Rocket

10/19/24 ELF 11
Solid Rockets Have High Acceleration Capability
1,000
100
10
1
0 1 2 3 4 5
Ramjet
T
Max = ( / 4 ) d
2

 V

2
[( V
e / V
 ) -
1 ]
Solid Rocket
T
Max = 2 P
C A
t = m
.
V
e
M, Mach Number
(
T
/ W
)
M
a
x
, (
T
h
r
u
s
t
/ W
e
ig
h
t
)
M
a
x
,
Note:
P
C = Chamber pressure, A
t = Nozzle throat area, m
.
= Mass flow rate
d = Diameter, 
 = Free stream density, V
 = Free stream velocity,
V
e = Nozzle exit velocity ( Turbojet: V
e ~ 2,000 ft / sec, Ramjet: V
e ~ 4,500 ft / sec, Rocket: V
e ~ 6,000 ft / sec )
Turbojet
T
Max
= ( / 4 ) d
2

 V

2
[( V
e / V
 ) -
1 ]

10/19/24 ELF 12
High Thrust for a Ramjet Occurs from Mach 3 to
5 with High Combustion Temperature
0
5
10
15
20
25
0 1 2 3 4 5
M, Mach Number
T
/

[
P
H
I

(

p
0

)
(
A
3

)
]
,

N
o
n
d
i
m
i
m
e
n
s
i
o
n
a
l
T
h
r
u
s
t
i
f

S
p
e
c
i
fi
c

H
e
a
t

R
a
ti
o

=

1
.
2
9
T4 / T0 = 3T4 / T0 = 5T4 / T0 = 10T4 / T0 = 15
T / (  p
0 A
3 ) =  M
0
2
{{[ T
4 / T
0 ] / { 1 + [(  - 1 ) / 2 ] M
0
2
}}
1/2
- 1 }
Note: Ideal ramjet, isentropic flow, exit pressure = free stream pressure,   1, T in R
Example for Ramjet Baseline:
M = 3.5, h = 60 Kft, T
4 = 4,000 deg R, ( f / a ) =
0.06,  = 0.900, T
0
= 392 Rankine, p
0
= 1.047
psi, A
3 = 287.1 in
2
,  = 1.29
T / (  p
0 A
3 ) = 1.29 ( 3.5 )
2
{{[ 4000 / 392 ] / { 1 +
[( 1.29 – 1 ) / 2 ] ( 3.5 )
2
}}
1/2
– 1 } = 14.49
T = 14.49 ( 0.900 ) ( 1.047 ) ( 287.1 ) = 3920 lb
Note:
T = Thrust
p
0 = Free stream static pressure
A
3 = Combustor flameholder entrance area
 = Specific heat ratio
M
0
= Free stream Mach number
T
4
= Combustor exit temperature
T
0
= Free stream temperature
 = Equivalence ratio

10/19/24 ELF 13
Maximum Specific Impulse And Thrust of Rocket
Occur at High Chamber Pressure and Altitude
220
240
260
280
0 5 10 15 20
Nozzle Expansion Ratio
Is
p
, S
p
e
c
if
ic
Im
p
u
ls
e
o
f
R
o
c
k
e
t
B
a
s
e
lin
e
h = SL, pc = 300 psi h = SL, pc = 1000 psi
h = SL, pc = 3000 psih = 100K ft, pc > 300 psi
I
SP = c
d {{[ 2 
2
/ (  - 1)] [ 2 / (  + 1)]
(  - 1 ) / (  + 1 )
[ 1 – ( p
e / p
c )
(  - 1 ) / 
]}
1/2
+ ( p
e / p
c )  - ( p
0 / p
c )  } c* / g
c
T = ( g
c
/ c* ) p
c
A
t
I
SP
 = {[ 2 / (  + 1)
1 / (  - 1 )
][(  -1) / (  + 1 )]
1/2
]} / {( p
e
/ p
c
)
1 / 
[ 1 - ( p
e
/ p
c
)
(  - 1 ) /


]
1/2
}
Note:
 = nozzle expansion ratio
p
e
= exit pressure
p
c
= chamber pressure
p
0
= atmospheric pressure
A
t = nozzle throat area
 = specific heat ratio = 1.18 in figure
c
d = discharge coefficient = 0.96 in figure
c* = characteristic velocity = 5,200 ft / sec in figure
Example for Rocket Baseline:
 = A
e / A
t = 6.2, A
t = 1.81 in
2
h = 20 Kft, p
0 = 6.48 psi
( p
c )
boost = 1769 psi, ( I
SP )
boost = 257 sec
( T )
boost
= ( 32.2 / 5200 ) ( 1769 ) (1.81 )( 257 ) = 5096 lb
( p
c
)
sustain
= 301 psi, ( I
SP
)
sustain
= 239 sec
( T )
boost
= ( 32.2 / 5200 ) ( 301 ) (1.81 )( 239 ) = 807 lb

10/19/24 ELF 14
Cruise Range Is Driven By L/D, I
sp, Velocity, and
Propellant or Fuel Weight Fraction
Typical Value for 2,000 lb Precision Strike Missile
Note: Ramjet and Scramjet missiles booster propellant for Mach 2.5 to 4 take-over speed not included in W
P
for cruise. Rockets require thrust magnitude control ( e.g., pintle, pulse, or gel motor ) for effective cruise.
Max range for a rocket is usually a semi-ballistic flight profile, instead of cruise flight.
R = ( L / D ) I
sp
V In [ W
L / ( W
L – W
P )] , Breguet Range Equation
Parameter
L / D, Lift / Drag
I
sp,
Specific Impulse
V
AVG ,
Average Velocity
W
P
/ W
L
, Cruise Propellant or
Fuel Weight / Launch Weight
R, Cruise Range
10
3,000 sec
1,000 ft / sec
0.3
1,800 nm
5
1,300 sec
3,500 ft / sec
0.2
830 nm
3
1,000 sec
6,000 ft / sec
0.1
310 nm
5
250 sec
3,000 ft / sec
0.4
250 nm
Solid Rocket
Hydrocarbon Fuel
Scramjet Missile
Liquid Fuel
Ramjet Missile
Subsonic Turbojet
Missile

10/19/24 ELF 15
Slurry Fuel and Efficient Packaging Provide
Extended Range Ramjet
Propulsion / Configuration Fuel Type / Volumetric
Performance (BTU / in3) /
Density (lb / in3)
Fuel Volume (in3) /
Fuel Weight (lb)
ISP (sec) / Cruise
Range at Mach 3.5,
60K ft (nm)
Liquid Fuel Ramjet



RJ-5 / 581 / 0.040 11900 / 476 1120 / 390
Ducted Rocket ( Low Smoke )



Solid Hydrocarbon / 1132 /
0.075
7922 / 594 677 / 294
Ducted Rocket ( High
Performance )



Boron / 2040 / 0.082 7922 / 649 769 / 366
Solid Fuel Ramjet



Boron / 2040 / 0.082 7056 / 579 1170 / 496
Slurry Fuel Ramjet 40% JP-10, 60% boron
carbide / 1191 / 0.050
11900 / 595 1835 / 770

Note: Flow Path Available FuelR
cruise
= V I
SP
( L / D )

ln [ W
BC
/ ( W
BC
- W
f
)]

10/19/24 ELF 16
Flight Trajectory Shaping Provides Extended Range
Altitude
Range
R
MAX
Apogee or Cruise
Glide
Climb
Rapid Pitch Up
Line-Of-Sight Trajectory
R
MAX
Design Guidelines for Horizontal Launch:
–High thrust-to-weight  10 for safe separation
–Rapid pitch up minimizes time / propellant to reach efficient altitude
–Climb at a  0 deg with thrust-to-weight  2 and q  700 psf minimizes drag / propellant to
reach efficient cruise altitude for ( L / D )
MAX
–High altitude cruise at ( L / D )
MAX
and q  700 psf maximizes range
–Glide from high altitude at ( L / D )
Max
and q  700 psf provides extended range

10/19/24 ELF 17
Rocket Baseline Missile Range Driven by I
SP
,
Propellant Weight, Drag, and Static Margin
-1
-0.5
0
0.5
1
1.5
IspProp.
Weight
CD0Drag-
Due-to-
Lift
Static
Margin
ThrustInert
Weight
Parameter
Nondimensional
Range
Sensitivity to
Parameter
Note: Rocket baseline:
h
L = 20k ft, M
L = 0.7, M
EC = 1.5
R
@ ML = 0.7, hL = 20K ft = 9.5 nm
Example: 10% increase in propellant
weight  8.8% increase in flight range

10/19/24 ELF 18
Ramjet Baseline Range Is Driven by I
SP
, Fuel
Weight, Thrust, and Zero-Lift Drag Coefficient
-1
-0.5
0
0.5
1
1.5
Inert
Weight
Fuel
Weight
CD0, Zero-
Lift Drag
Coefficient
CLA, Lift-
Curve-
Slope
Coefficient
Thrust ISP
Parameter
N
o
n
d
im
e
n
s
io
n
a
l R
a
n
g
e
S
e
n
s
it
iv
it
y

t
o
P
a
r
a
m
e
t
e
r
Sea Level Flyout at Mach 2.320 Kft Flyout at Mach 2.5
40 Kft Flyout at Mach 2.860 Kft Flyout at Mach 3.0
Example: At Mach 3.0 / 60K ft altitude
cruise, 10% increase in fuel weight 
9.6% increase in flight range

10/19/24 ELF 19
Ramjet Baseline Flight Range Uncertainty Is +/- 7%, 1 
Parameter Baseline Value at Mach
3.0 / 60k ft

Uncertainty in Parameter

R / R due to Uncertainty
1. Inert Weight 1205 lb +/- 2%, 1

+/- 0.8%, 1


2. Ramjet Fuel Weight 476 lb +/- 1%, 1

+/- 0.9%, 1


3. Zero-Lift Drag Coefficient 0.17 +/- 5%, 1

+/- 4%, 1


4. Lift Curve Slope Coefficient 0.13 / deg +/- 3%, 1

+/- 1%, 1


5. Cruise Thrust (

= 0.39 ) 458 lb +/- 5%, 1

+/- 2%, 1


6. Specific Impulse 1040 sec +/- 5%, 1

+/- 5%, 1



Level of Maturity of Ramjet Baseline Based on Flight Demo of Prototype and Subsystem Tests
Wind tunnel tests
Direct connect, freejet, and booster firing propulsion tests
Structure test
Hardware-in-loop simulation
Total Flight Range Uncertainty at Mach 3.0 / 60K ft Flyout
R / R = [ (R / R )
1
2
+ (R / R )
2
2
+ (R / R )
3
2
+ (R / R )
4
2
+ (R / R )
5
2
+ (R / R )
6
2
]
1/2
= +/- 6.9%, 1
R = 445 nm +/- 31 nm, 1

10/19/24 ELF 20
US Tactical Missile Follow-On Programs Provide
Enhanced Performance
Year Entering EMD
AIM-9X ( maneuverability ), 1996 - Hughes
AIM-120 ( speed, range ), 1981 - Hughes
Long Range ATS, AGM-86, 1973 - BoeingAGM-129 ( RCS ), 1983 - General Dynamics
PAC-3 (accuracy), 1992 - Lockheed MartinLong Range STA, MIM-104, 1966 - Raytheon
1950 1965 1970 1975 1980 1985 1990 1995 >2000
AGM-88 ( speed, range ), 1983 - TI
Man-portable STS, M-47, 1970 - McDonnell Douglas
Anti-radar ATS, AGM-45, 1961 - TI
Short Range ATA, AIM-9, 1949 - Raytheon
Javelin ( gunner survivability,
lethality, weight ), 1989 - TI
Medium Range ATA, AIM-7,1951 - Raytheon
Medium Range ATS, AGM-130, 1983 - RockwellJASSM ( range, observables ),
1999 - Lockheed Martin
Hypersonic Missile, ~2005
Hypersonic Missile ~2005
Long Range STS, BGM-109, 1972 - General DynamicsHypersonic Missile ~2005

10/19/24 ELF 21
Example of Missile Technology State-of-the-Art
Advancement: Missile Maneuverability
0
10
20
30
40
50
60
1950196019701980199020002010
Year IOC
O
p
e
r
a
t
i
o
n
a
l
A
n
g
l
e

o
f
A
t
t
a
c
k
,

D
e
g
r
e
e
s
AIM-7A
AM-9B
R530
AA-8
AIM-54
R550
Skyflash
Python 3
AA-10
Aspide
Super 530D
AA-11
AIM-120
Python 4
AA-12
MICA
AIM-132
AIM-9X
Controls Augmented
with Propulsion
Devices ( TVC,
Reaction Jet )

10/19/24 ELF 22
Example of Missile Technology State-of-the-Art
Advancement: Supersonic Air Breathing Missiles
0
1
2
3
4
5
6
7
1950196019701980199020002010
Year Flight Demonstration
M
c
r
u
i
s
e
,

C
r
u
i
s
e

M
a
c
h

N
u
m
b
e
r
Cobra
Vandal / Talos
RARE
Bloodhound
BOMARC
Typhon
CROW
SA-6
Sea Dart
LASRM
ALVRJ
3M80
ASALM
Kh-31
ASMP
ANS
Kh-41
SLAT
HyFly
Scramjet
Ramjet

10/19/24 ELF 23
New Technologies That Enhance Tactical Missile
Performance
Dome
Faceted / Window
Multi-lens
Seeker
Strapdown
High Gimbal
G & C
GPS / INS
In-flight
Optimize
,  Feedback
Propulsion
Liquid / Solid Fuel Ramjet
Variable Flow Ducted Rocket
Scramjet
High Temperature Combustor
High Density Fuel / Propellant
High Throttle Fuel Control
Endothermic Fuel
Composite Case
Pintle / Pulsed / Gel Motor
Insulation
Hypersonic
High Density
Flight Control
TVC / Reaction Jet
Power
MEMS
Airframe
Lifting Body
Neutral Static Margin
Lattice Fins
Low Drag Inlet
Mixed Comp. Inlet
Composite
Titanium Alloy
MEMS Data
Collection
Split Canard
Free-to-roll Tails

10/19/24 ELF 24
Outline
Parameters and Technologies That Drive Missile Flight
Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance ( Workshop )
Summary

10/19/24 ELF 25
Flight Envelope Should Has Large Max Range,
Small Min Range, and Large Off Boresight
Rear Flyout Range
•Max
•Min
Forward Flyout Range
•Max
•Min
Beam Off Boresight
Flyout Range
•Min
•Max

10/19/24 ELF 26
Examples of Air Launched Missile Flight
Performance

10/19/24 ELF 27
Examples of Surface Launched Missile Flight
Performance

10/19/24 ELF 28
Conceptual Design Modeling Versus Preliminary
Design Modeling
Conceptual Design Modeling
1 DOF [ Axial force ( C
D
O
), thrust, weight ]
2 DOF [ Normal force ( C
N ), axial force, thrust, weight ]
3 DOF point mass [ 3 forces ( normal, axial, side ), thrust,
weight ]
3 DOF pitch [ 2 forces ( normal, axial ), 1 moment
( pitch ), thrust, weight ]
4 DOF [ 2 forces ( normal, axial ), 2 moments ( pitch,
roll ), thrust, weight ]
Preliminary Design Modeling
6 DOF [ 3 forces ( normal, axial, side ), 3 moments ( pitch,
roll, yaw ), thrust, weight ]
C
D
O
C
N
C
N
C
N
C
m
C
A
C
A
C
A
C
A
C
A
C
l
C
l
C
N
Cm
C
N
Cm
C
n
C
Y
C
Y

10/19/24 ELF 29
3 DOF Simplified Equations of Motion Show
Drivers for Configuration Sizing
Configuration Sizing Implication


y

..
 q S
Ref
d C
m

 + q S
Ref
d C
m

 High Control Effectiveness  C
m

>
C
m

, I
y
small ( W small ), q large
( W / g
c
) V 
.
 q S
Ref
C
N

 + q S
Ref
C
N

 - W cos  Large / Fast Heading Change  C
N

large, W small, q large
( W / g
c ) V
.
 T - C
A S
Ref q - C
N


2
S
Ref q - W sin  High Speed / Long Range  Total
Impulse large, C
A
small, q small

+ Normal Force
 << 1 rad



W
+ Moment
V
+ Thrust
+ Axial Force
Note: Based on aerodynamic control

10/19/24 ELF 30
1.00E+05
1.00E+06
1.00E+07
1.00E+08
0 0.10.20.30.40.50.60.70.8
WP / WBC, Propellant or Fuel Weight / Weight at Begin of Cruise
R
, C
r
u
is
e
R
a
n
g
e
, f
t
(VISP)(L/D) = 2,000,000 ft(VISP)(L/D) = 10,000,000 ft
(VISP)(L/D) = 25,000,000 ft
For Long Range Cruise, Maximize V I
sp, L / D,
And Fuel or Propellant Weight Fraction
Example: Ramjet Baseline at Mach 3 / 60 Kft alt
R = 2901 ( 1040 ) ( 3.15 ) ln [ 1739 / ( 1739 - 476 )]
= ( 9,503,676 ) ln [ 1 / ( 1 - 0.2737 )] = 3,039,469 ft =
500 nm
R = ( V I
sp ) ( L / D ) ln [ W
BC / ( W
BC - W
P )] , Breguet Range Equation
Note: R = cruise range, V = cruise velocity, I
SP
= specific impulse, L = lift, D = drag,
W
BC = weight at begin of cruise, W
P = weight of propellant or fuel
Typical Rocket
Typical Ramjet with Axisymmetric AirframeRamjet with High L / D Airframe

10/19/24 ELF 31
Efficient Steady Flight Is Enhanced by High L / D
and Light Weight
Steady Level FlightSteady Climb Steady Descent
T = D
L = W
L
D T
W

C
SIN 
D
= ( D – T ) / W = V
D
/ V

V
D
= ( D – T ) V

/ W
R
D = h / tan 
D = h ( L / D )
T – D
L
D
T
W
V


CV
C
D – T
L
D
T
W

DV
D

D
•Small Angle of Attack
•Equilibrium Flight
•V
C
= Velocity of Climb
•V
D = Velocity of Descent

C
= Flight Path Angle During Climb

D
= Flight Path Angle During Descent
•V
 = Total Velocity
h = Incremental Altitude
•R
C
= Horizontal Range in Steady Climb
•R
D
= Horizontal Range in Steady Dive ( Glide )
Note:
Reference: Chin, S.S., “Missile Configuration Design,”
McGraw Hill Book Company, New York, 1961
V

T = W / ( L / D )SIN 
c
= ( T – D ) / W = V
c
/ V

V
c
= ( T – D ) V
 / W
R
C = h / tan 
C = h ( L / D )

10/19/24 ELF 32
Small Turn Radius Requires High Angle of Attack
and Low Altitude Flight
R
T
, E
x
a
m
p
le
In
s
t
a
n
t
a
n
e
o
u
s
T
u
r
n
R
a
d
iu
s
, F
e
e
t
  = Increment in Angle of Attack Required to Turn, Degrees
h = 100 K ft ( M
(L/D)
Max
= 7.9 )
h = 80 K ft ( M
(L/D)
Max
= 5.0 )
h = 60 K ft ( M
(L/D)
Max
= 3.1 )
h = 40 K ft ( M
(L/D)
Max
= 1.9 )
10,000,000
1,000,000
100,000
10,000
1,000
0 5 10 15 20
• • • •








Note for Example:
W = Weight = 2,000 lb
a / b = 1 ( circular cross section ), No wings
C
N
= sin 2  cos (  / 2 ) + 2 ( l / d ) sin
2

l / d = Length / Diameter = 10
S
Ref
= 2 ft
2
C
D
O
= 0.2
( L / D )
Max = 2.7, q
( L / D )
Max
= 1,000 psf

( L / D )
Max
= 15 degrees
T
( L / D )
Max
= 740 lb
Example:
  = 10 deg
C
N
= 0.99
h = 40K ft ( ρ = 0.00039 slugs / ft
3
)
R
T
= 2 ( 2,000 ) / [( 32.2 ) ( 0.99 ) ( 2 ) ( 0.00039 )] = 161,000 ft
R
T
= V / 
.
 2 W / ( g
c
C
N
S
Ref
 )

10/19/24 ELF 33
Turn Rate Performance Requires High Control
Effectiveness


.
= g
c
n / V = [ q S
Ref
C
N
 + q S
Ref
C
N
 - W cos (  ) ] / [( W / g
c
) V ]
Assume Rocket Baseline @ Mach 0.8 Launch, 20K ft Altitude
(C
m
)
xcg=84.6
= (C
m
)
xcg=75.7
+ C
N
( 84.6 – 75.7 ) / d = - 0.40 + 0.68 ( 8.9 ) / 8 = 0.36 per deg
(C
m
)
xcg=84.6
= (C
m
)
xcg=75.7
+ C
N
( 84.6 – 75.7 ) / d = 0.60 + 0.27( 8.9 ) / 8 = 0.90 per deg
 /  = - C
m
/ C
m
= - 0.90 / 0.36 = - 2.5
’ =  +  < 22 degrees, 
max = 30 deg   = 30 deg,  = - 12 deg

.
= [ 436 ( 0.349 )( 0.68 )( 30 ) + 436 ( 0.349 )( 0.27 )( - 12 ) – 500 ( 1 )] / [( 500 / 32.2 )( 830 )] = 0.164 rad / sec or 9.4 deg / sec
Assume Rocket Baseline @ Mach 2 Coast, 20K ft Altitude
 /  = 0.75
’ =  +  = 22 degrees   = 12.6 deg,  = 9.4 deg

.
= [ 2725 ( 0.349 )( 0.60 )( 9.4 ) +2725 ( 0.349 )( 0.19 )( 12.6 ) – 367 ( 1 )] / ( 367 / 32.2 )( 2074 ) = 0.31 rad / sec or 18 deg / sec
Note: High q, statically stable, forward wing control, lighter weight  higher climb capability
Note: Forward wing deflection to trim increases normal force

10/19/24 ELF 34
For Long Range Coast, Maximize Initial Velocity
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5 2
Example for Rocket Baseline:
•W
BO
= 367 lb, S
Ref
= 0.349 ft
2
, V
BO
= 2,151 ft / sec,  = 0 deg, C
D
0
= 0.9, h = 20,000 ft ( ρ = 0.00127 slugs / ft
3
), t = 10 sec
•t / [ 2 W
BO
/ ( g
c
ρ S
Ref
C
D
0
V
BO
)] = 10 / { 2 ( 367 ) / [ 32.2 ( 0.00127 ) ( 0.349 ) ( 0.9 ) ( 2151 ) ]} = 10 / 26.6 = 0.376
•V / V
BO
= 0.727, V = 0.727 x 2151 = 1564 ft / sec, R / [ 2 W
BO
/ ( g
c
ρ S
Ref
C
D
0
)] = 0.319, R

= 18,300 ft or 3.0 nm
t
/ [ 2 W / ( g ρS C
D
0
V
BC )], Non-dimensional Coast Time
V / V
BO = 1 / { 1 + t / { 2 W
BO / [ g
c ρ
AVG S
Ref ( C
D
0
)
AVG V
BO ]}}
R / { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
(C
D
0
)
AVG
]} = ln {1 + t

/ { 2
W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
BO
]}}
Note: Based on 1DoF
dV / dt = - g
c
C
D
0
S
Ref
q / W
Assumptions:
  = constant
   0 deg
• D > W sin 
V

= velocity during coast
V
BO
= velocity @ burnout ( begin coast )
R = coast range
V
x = V cos , V
y = V sin 
R
x = R cos , R
y = R sin 

10/19/24 ELF 35
For Long Range Ballistic Flight, Maximize Initial
Velocity
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5 2
t

/ [ 2 W / ( g ρS C
D
0
V
i
)], Non-dimensional Time
V
x
/ ( V
i
cos 
i
) = 1 / { 1 + t / { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
i
]}}
( V
y
+ g
c
t ) / ( V
i
sin 
i
) = 1 / { 1 + t / { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
i
]}
Assumptions: T = 0,  = 0 deg, D > W sin , flat earth
Nomenclature: V
= velocity during ballistic flight, V
i = initial
velocity, R
x = horizontal range, h = altitude, h
i = initial
altitude, V
x
= horizontal velocity, V
y
= vertical velocity
Example for Rocket Baseline:
•W
BO
= 367 lb, S
Ref
= 0.349 ft
2
, V
i
= V
BO
= 2,151 fps, 
i
= 0 deg, ( C
D
0
)
AVG
= 0.9, h
i
= 20,000 ft, ρ
AVG
= 0.001755 slugs / ft
3
, t = 35 sec
•t / [ 2 W
BO
/ ( g
c
ρ S
Ref
C
D
0
V
i
)] = 35 / { 2 ( 367 ) / [ 32.2 ( 0.001755 ) ( 0.349 ) ( 0.9 ) ( 2151 ) ]} = 35 / 19.22 = 1.821
•V
x
/ ( V
i
cos 
i
) = 0.354  V
x
= 762 ft / sec, ( V
y
+ 32.2 t ) / ( V
i
sin 
i
) = 0.354  V
y
= - 1127 ft / sec, R
x
/ [ 2 W
i
cos 
i
/ ( g
c
ρ S
Ref

C
D
0
)] = 1.037  R
x


= 42,900 ft or 7.06 nm, ( h – h
i
+ 16.1 t
2
) / [ 2 W
BO
cos 
i
/ ( g
c
ρ S
Ref
C
D
0
)] = 1.037  h = 0 ft
R
x
/ { 2 W
BO
cos 
i
/ [ g
c
ρ
AVG
S
Ref
(C
D
0
)
AVG
]} = ln { 1 + t

/ { 2
W
BO
/ [ g
c
( ρ )
AVG
S
Ref
( C
D
0
)
AVG
V
i
]}}
( h – h
i
+ g
c
t
2
/ 2 ) / { 2 W
BO
sin 
i
/ [ g
c
ρ
AVG
S
Ref
(C
D
0
)
AVG
]} =
ln { 1 + t

/ { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
i
]}

10/19/24 ELF 36
High Propellant Weight and High Thrust Provide
High Burnout Velocity
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.1 0.20.3 0.40.5
Wp / Wi, Propellant Fraction
D
e
lt
a
V
/ (
g
IS
P
)
, N
o
n
d
im
e
n
s
io
n
a
l
In
c
r
e
m
e
n
t
a
l V
e
lo
c
it
y
DAVG / T = 0DAVG / T = 0.5DAVG / T = 1.0
V / ( g
c I
SP ) = - ( 1 - D
AVG / T ) ln ( 1 - W
p / W
i )
Example for Rocket Baseline:
W
i = W
L = 500 lb
For boost, W
P
= 84.8 lb
W
P
/ W
L
= 0.1696
I
SP = 250 sec
T
B
= 5750 lb
M
i
= M
L
= 0.8, h
i
= h
L
= 20,000 ft
D
AVG = 635 lb
D
AVG
/ T = 0.110
V / [( 32.2 ) ( 250 )] = - ( 1 -
0.110 ) ln ( 1 - 0.1696 ) = 0.1654
V = ( 0.1654 ) ( 32.2 ) ( 250 )
= 1331 ft / sec
Note: 1 DOF Equation of Motion with   0 deg,  = constant, and T > W sin , W
i = initial weight, W
P =
propellant weight, I
SP
= specific impulse, T = thrust, M
i
= initial Mach number, h
i
= initial altitude, D
AVG
= average
drag, V = incremental velocity, g
c = gravitation constant, V
x = V cos , V
y = V sin , R
x = R cos , R
y = R sin 
Note: R = ( V
i + V / 2 ) t
B, where R = boost range, V
i = initial velocity, t
B = boost time

10/19/24 ELF 37
High Missile Velocity and Lead Are Required to
Intercept High Speed Crossing Targets
V
M / V
T
4
3
2
0
0 10 20 30 40 50
L, Lead Angle, Degrees
1
A = 90°
A = 45°
Note:Proportional Guidance
V
M= Missile Velocity
V
T= Target Velocity
A= Target Aspect
L= Missile Lead Angle
 Seeker Gimbal
V
M
V
T
LA
V
M sin L = V
T sin A, Proportional Guidance Trajectory
Example:
L = 30 degrees
A = 45 degrees
V
M / V
T = sin ( 45 ) / sin ( 30 ) =
1.42

10/19/24 ELF 38
Example of Spreadsheet Based Conceptual
Sizing Computer Code - TMD Spreadsheet
Define Mission Requirements [ Flight Performance ( R
Max
, R
Min
, V
AVG
) , MOM, Constraints ]
Establish Baseline ( Rocket , Ramjet )
Aerodynamics Input ( d, l, l
N, A, c, t, x
cg )
Aerodynamics Output [ C
D
0
, C
N, X
AC, C
m

, L / D, S
T ]
Propulsion Input ( p
c, , c*, A
b, A
t, A
3, H
f, , T
4, Inlet Type )
Propulsion Output [ I
sp, T
cruise, p
t
2
/ p
t
0
, w
.
, T
boost, T
sustain, V
Boost ]
Weight Input ( W
L
, W
P
, 
max
)
Weight Output [ Q, dT
skin
/ dt, T
skin
, 
skin
, t
skin
, 
buckling
, M
B
, ( F
t
)
Motor
, W, x
cg
, I
y
]
Trajectory Input ( h
i, V
i, Type ( cruise, boost, coast, ballistic, turn, glide )
Trajectory Output ( R, V, and  versus time )
Meet
Performance?
Measures of Merit and Constraints
No [ p
Blast
, P
K
, n
Hits
,
V
fragments
, P
KE
,
KE
Warhead, 
Total,

HE, 
MAN, R
detect,
C
Weight, C
unit x ]
No [ R
Max, R
Min, V
AVG ]
Yes
Yes
Alt Mission
Alt Baseline
Resize / Alt Config /
Subsystems / Tech

10/19/24 ELF 39
Outline
Examples of Parameters and Technologies That Drive
Missile Flight Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance
( Workshop )
Summary

10/19/24 ELF 40
Rocket Baseline Missile Configuration
STA 60.8
19.4
3.4
18.5
STA 125.4
LE
MAC
at STA 67.0
BL 10.2
 = 45
40.2
STA 0 19.2 46.1 62.6 84.5 138.6
Note: Dimensions in inches
Source: Bithell, R.A. and Stoner, R.C., “Rapid Approach for Missile Synthesis, Vol. 1, Rocket Synthesis
Handbook,” AFWAL-TR-81-3022, Vol. 1, March 1982.
Nose Forebody Payload
Bay
Midbody Aftbody Tailcone
Rocket Motor
 = 57
12.0
LE
MAC
at
STA 131.6
BL 8.0
16.1
8.0 d
cg
BO
cg
Launch
143.9

10/19/24 ELF 41
Rocket Baseline Missile Propellant Weight Is
27% of the Launch Weight
1Nose ( Radome ) 4.1 12.0
3Forebody structure 12.4 30.5
Guidance 46.6 32.6
2Payload Bay Structure 7.6 54.3
Warhead 77.7 54.3
4Midbody Structure 10.2 73.5
Control Actuation System 61.0 75.5
5Aftbody Structure 0.0 –
Rocket Motor Case 47.3 107.5
Insulation 23.0 117.2
6Tailcone Structure 6.5 141.2
Nozzle 5.8 141.2
Fixed Surfaces 26.2 137.8
Movable Surfaces 38.6 75.5
Burnout Total 367.0 76.2
Propellant 133.0 107.8
Launch Total 500.0 84.6
Component Weight, lbs. C.G. STA, In.

10/19/24 ELF 42
Rocket Baseline Missile Has Boost-Sustain
Thrust - Time History
Time – Seconds
0 4 8 12 16
0
2
4
6
8
Thrust – 1,000 lbs
Note: Sea Level, 60°F

10/19/24 ELF 43
Rocket Baseline Missile Has Higher
Maneuverability at High Angle of Attack
4
0
0 4 8 12 16
, Angle of Attack – Degrees
12
8
20
C
N
, N
o
r
m
a
l F
o
r
c
e
C
o
e
f
f
ic
ie
n
t
20
16
24
1.2
0.6
M = 1.2
1.5
2.0
2.35
2.87
3.95
4.60
S
Ref
= 0.349 ft
2
, l
Ref
= d = 0.667 ft, C.G. at STA 75.7,  = 0 deg

10/19/24 ELF 44
Rocket Baseline Missile Control Effectiveness
and Drag Are Driven by Mach Number
0.4
0
0 1 2 3 4
M, Mach Number
1.2
0.8
5
C
A
a
t

=
0
°
0.1
0
Power Off
Power On
0.2
0.3
C
N

~
P
e
r
D
e
g
r
e
e

10/19/24 ELF 45
-5
0
5
10
15
0 5 10 15 20 25
t, Time, sec
n
x
, A
x
ia
l A
c
c
e
le
r
a
t
io
n
, g
Rocket Baseline Has High Boost Acceleration
Note:
t
f
= 24.4 sec
M
L
= 0.8
h
L = 20,000 ft
T
B
= 5750 lb
t
B
= 3.26 sec
T
S
= 1018 lb
t
S
= 10.86 sec
D = 99 lb at Mach 0.8
D = 1020 lb at Mach 2.1
W
L
= 500 lb
W
P
= 133 LB
n
X = ( T - D ) / W
Boost
Sustain
Coast

10/19/24 ELF 46
0
1000
2000
3000
0 5 10 15 20 25
t, Time, sec
V
, V
e
lo
c
ity
, ft / s
e
c
Rocket Baseline Missile Has Nearly Constant
Velocity During Sustain
Boost
Sustain
Coast
V / ( g
c
I
SP
) = - ( 1 - D
AVG
/ T ) ln ( 1 - W
p
/ W
i
), During Boost
V / V
BO
= 1 / { 1 + t / { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
BO
]}}, During Coast
Note:
M
L = 0.8
h
L = 20K feet

10/19/24 ELF 47
Rocket Baseline Missile Maximum Range Is
About Eight Nautical Miles
0
2
4
6
8
10
0 5 10 15 20 25
t, Time, sec
R
,

F
li
g
h
t

R
a
n
g
e
,
n
m
Boost
Sustain
Coast
R =  R
boost +  R
sustain +  R
coast
Note:
M
L = 0.8
h
L = 20K feet

10/19/24 ELF 48
Rocket Baseline Missile Has About 30 G
Maneuverability
( n
Z
) = ( n
Z
)
Body
+ ( n
Z
)
Wing
+ ( n
Z
)
Taill
 Rocket Baseline @
•Mach 2
•20,000 ft altitude
•367 lb weight ( burnout )
Compute

Wing
= ’
Max
= (  +  )
Max
= 22 deg for rocket baseline
 = 0.75, 
Body = 
Tail = 9.4 deg
( n
Z
)
Body
= q S
Ref
( C
N
)
Body
/ W = 2725 ( 0.35 ) ( 1.1 ) / 367 = 2.9 g ( from body )
( n
Z
)
Wing
= q S
Wing
[( C
N
)
Wing
(S
Ref
/

S
Wing
)] / W = 2725 ( 2.55 ) ( 1.08 ) / 367 = 20.4 g ( from wing )
( n
Z
)
Tail
= q S
Tail
[( C
N
)
Tail
( S
Ref
/

S
Tail
)] / W = 2725 ( 1.54 ) ( 0.50 ) / 367 = 5.7 g ( from tail )

n
Z
= 2.9 + 20.4 + 5.7 = 29 g

10/19/24 ELF 49
Example of Boost Climb - Ballistic Trajectory

Assume Rocket Baseline @ 
i
= 45 deg, h
i
= h
f
= 0 ft
Velocity, Horizontal Range, and Altitude During Initial Boost @  = 45 deg
V = - g
c I
SP ( 1 - D
AVG / T ) ln ( 1 - W
p / W
i ) = -32.2 ( 250 ) ( 1 – 419 / 5750 ) ln ( 1 – 84.8 / 500 ) = 1,387 ft / sec
R = ( V
i + V / 2 ) t
B = ( 0 + 1387 / 2 ) 3.26 = 2,260 ft
R
x
= R cos 
i
= 2260 ( 0.707 ) = 1,598 ft
R
y
= R sin 
i
= 2260 ( 0.707 ) = 1,598 ft
h = h
i + R
y = 0 + 1598 = 1,598 ft
Velocity, Horizontal Range, and Altitude During Sustain @  = 45 deg
V = - g
c
I
SP
( 1 - D
AVG
/ T ) ln ( 1 - W
p
/ W
i
) = -32.2 ( 230.4 ) ( 1 – 650 / 1018 ) ln ( 1 – 48.2 / 415.2 ) = 585 ft / sec
V
BO = 1387 + 585 = 1,972 ft / sec
R = ( V
i + V / 2 ) t
B = ( 1387 + 585 / 2 ) 10.86 = 18,239 ft
R
x = R cos 
i = 18239 ( 0.707 ) = 12,895 ft
R
y = R sin 
i = 18239 ( 0.707 ) = 12,895 ft
h = h
i
+ R
y
= 1598 + 12895 = 14,493 ft

10/19/24 ELF 50
Example of Boost Climb - Ballistic Trajectory
( cont )
Velocity, Horizontal Range, and Altitude During Ballistic Flight
h
f
= h
i
= 0 ft  t
ballistic
= 59 sec )
V
x
= V
i
cos 
i
/ { 1 + t / { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
BO
]}} = 1972 ( 0.707 ) / { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} = 395 ft / sec
V
y = V
i sin 
i / { 1 + t / { 2 W
BO / [ g
c ρ
AVG S
Ref ( C
D
0
)
AVG V
BO ]} – 32.2 t = 1972 ( 0.707 ) / { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} – 32.2 ( 59 ) = - 1,505 ft / sec
R
x
= { 2 W
BO
cos 
i
/ [ g
c
ρ
AVG
S
Ref
(C
D
0
)
AVG
]} ln { 1 + t

/ { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
BO
]}} = { 2 ( 367 ) ( 0.707 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 )]} ln { 1 + 59 / { 2 ( 367 ) / [ 32.2
( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} = 40,991 ft
h = h
i
+ { 2 W
BO
sin 
i
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
]} ln { 1 + t

/ { 2 W
BO
/ [ g
c
ρ
AVG
S
Ref
( C
D
0
)
AVG
V
BO
]} - 16.1 t
2
= 14493 + { 2 ( 367 ) ( 0.707 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 )]} ln { 1 + 59
/ { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} – 16.1 ( 59 )
2
= 0 ft
Total Time of Flight and Horizontal Range
t = t = t
boost
+ t
sustain
+ t
ballistic
= 3.26 + 10.86 + 59 = 73 sec
R
x
= R
x
= R
x,boost
+ R
x,sustain
+ R
x,ballistic
= 1598 + 12895 + 40991 = 55,894 ft = 9.2 nm

10/19/24 ELF 51
Boost Climb – Ballistic – Glide Trajectory
Provides Extended Range
Rocket Baseline @ 
i = 45 deg, h
i = h
f = 0 ft
From Previous Example, the Boost Climb – Ballistic Conditions at Apogee are:
t = 36 sec
 = 0 deg
V = 702 ft / sec
h = 28,994 ft
R
x = 36,786 ft
q = 227 psf
M = 0.7
( L / D )
max
= 5.22

( L / D )
max
= 5.5 deg
Incremental Horizontal Range During the ( L / D )
max Glide from Apogee to the Ground is given by
R
x = ( L / D ) h = 5.22 ( 28994 ) = 151,349 ft
Total Horizontal Range for a Boost Climb – Ballistic – Glide Trajectory is
R
x = R
x = R
x,BoostClimb-Ballistic + R
x,Glide = 36786 + 151349 = 188,135 ft = 31.0 nm

10/19/24 ELF 52
Glide at ( L / D )
max
Provides Extended Range
0
10
20
30
0 10 20 30 40
R, Range, nm
h
, A
lt
it
u
d
e
, K
ilo
F
e
e
t
S
u
s
ta
in
B
a
llis
tic
Note: Rocket Baseline
 End of boost, t = 3.26 sec,  = 45 deg, V = 1387 ft / sec
 End of sustain, t = 14.12 sec,  = 45 deg, V = 1972 ft / sec
Apogee, t = 36 sec,  = 0 deg, V = 702 ft / sec
Ballistic impact, t = 73 sec,  = - 65 deg, V = 1556 ft / sec
Glide impact, t = 286 sec,  = - 10.8 deg, V = 500 ft / sec





B
a
l
l
i
s
t
i
c
G
l
i
d
e

a
t

(

L

/

D

)
m
a
x

10/19/24 ELF 53
Soda Straw Rocket Design, Build, and Fly
Objective – Hands-on Learning of Rocket Physics Based on
Design
Build
Fly
Furnished Property
1 Launch System
1 Target
1 Weight Scale
Furnished Material
1 Soda Straw: ¼ in Inside Diameter by 11 in Length
1 Strip Tabbing: ½ in by 6 in
1 Tape Dispenser
1 Wood Dowel: ¼ in Diameter by 1 in Length

10/19/24 ELF 54
Soda Straw Rocket ( cont )
Design – Soda Straw Rocket
Compatible with Furnished Property Launch System
Launch tube outside diameter: ¼ in
Launch tube length: 6 in
Launch static gauge pressure: up to 30 psi
Design Body and Tails for
Maximum flight range
Accurate and stable flight
Calculate Aerodynamic Drag Coefficient
Skin friction drag
Base drag
Calculate Thrust and Thrust Duration
Measure Weight
 0.1 gram accuracy
Predict Flight Range and Altitude for Proscribed
Launch pressure
Elevation angle

10/19/24 ELF 55
Soda Straw Rocket ( cont )
Build - Soda Straw Rocket Using Either
Furnished Material
Or Can Use Own Material
Fly - Soda Straw Rocket
Proscribed Target Location, Launch Location, Launch Pressure, and Launch Angle
Compare Flight Test Results for Alternative Concepts
Highest vertical location of impact
Smallest horizontal dispersal from impact aim point
Discuss Reasons for Performance of Alternative Concepts

10/19/24 ELF 56
Example Baseline Configuration Geometry,
Weight, and Balance
Example Baseline Configuration
Diameter = d = ¼ in = 0.0208 ft
Outside Length = l = 5 in = 0.417 ft
Inside Cavity Length Available for Launch Tube = l
c = 4 in = 0.333 ft
Hemispherical Nose
Reference Area = S
Ref
= (  / 4 ) d
2
= 0.0491 in
2
= 0.000341 ft
2
4 Tail Panels ( Cruciform Tails, n
T = 2 )
Each tail panel ½ in by 1 in
Mean aerodynamic chord = c
mac
= 1 in = 0.0833 ft

Exposed area of 2 tail panels = S
T
= 1 in
2
= 0.00694 ft
2

Exposed aspect ratio of 2 tail panels = A = b
2
/ S
T
= ( 1 )
2
/ ( 1 ) = 1.0
Example Baseline Weight and Balance
W = 1.9 gram = 0.0042 lb
X
cg / l = 0.55
ll
cc
ll

10/19/24 ELF 57
Example Baseline Boost Performance
During Boost, Thrust ( T ) Provided by Pressurized Launch Tube

T = ( p – p
0 ) A = p
gauge ( 1 – e
– t / 
) A

A = S
Ref = 0.0491 in
2
,  = Rise Time to Open Valve

Assume p
gauge = 20 psi,  = 0.2 sec
T = 20 ( 1 - e
– t / 0.2
) ( 0.0491 ) = 0.982 ( 1 - e
– 5.00 t
)
Actual Thrust Lower ( Pressure Loss, Boundary Layer, Launch Tube Friction )
Acceleration ( a ), Velocity ( V ), and Distance ( s ) During Boost
a  32.2 T / W = 32.2 ( 0.982 ) ( 1 - e
– 5.00 t
) / 0.0042 = 7528.667 ( 1 - e
– 5.00 t
)
V = 7528.667 t + 1505.733 e
– 5.00 t
– 1505.733
s = 3764.333 t
2
– 301.147 e
– 5.00 t
– 1505.733 t + 301.147
End of Boost Conditions
s = l
c
= 0.333 ft  t = 0.0382 sec
V = 25.8 ft / sec
q = ½  V
2
= ½ ( 0.002378 ) ( 25.8 )
2
= 0.791 psf
M = V / c = 25.8 / 1116 = 0.0231

10/19/24 ELF 58
Example Baseline Drag Coefficient
Total Drag Coefficient C
D
0
= (C
D
0
)
Body + (C
D
0
)
Tail
During Coast, C
D0
= ( C
D0
)
Body,Friction + (C
D
0
)
Base,Coast
+ ( C
D0
)
Tail,Friction = 0.053 ( l / d ) [ M / ( q l )]
0.2
+ 0.12 +
n
T
{ 0.0133 [ M / ( q c
mac
)]
0.2
} ( 2 S
T
/ S
Ref
)
C
D
0
= 0.053 ( 20 ){ 0.0231 / [( 0.791 ) ( 0. 417 )]}
0.2
+ 0.12 + 2 { 0.0133 { 0.0231 / [( 0.791 ) ( 0.0833 )]}
0.2
}[
2 ( 0.00694 ) / 0.000341 )] = 0.62 + 0.12 + 0.88 = 1.62
Above Drag Coefficient Not Exact
Based on Assumption of Turbulent Boundary Layer
Soda Straw Rocket Is Small Size and Low Velocity  Laminar Boundary Layer

10/19/24 ELF 59
Example Ballistic Flight Performance
Horizontal Range Equation
R
x
= { 2 W cos 
i
/ [ g
c
ρ S
Ref
C
D
0
]} ln { 1 + t

/ { 2 W / [ g
c
ρ S
Ref
C
D
0
V
i
]} = { 2 ( 0.0042 ) cos 
i
/ [ 32.2 ( 0.002378 ) ( 0.000341 ) ( 1.62 )]} ln { 1 + t /
{ 2 ( 0.0042 ) / [ 32.2 ( 0.002378 ) ( 0.000341 ) ( 1.62 ) ( 25.8 )]} = 199 cos 
i
ln ( 1 + 0.130 t )
Height Equation
h = { 2 W sin 
i
/ [ g
c
ρ S
Ref
C
D
0
]} ln { 1 + t

/ { 2 W / [ g
c
ρ S
Ref
C
D
0
V
i
]} + h
i
- g
c
t
2
/ 2 = { 2 ( 0.0042 ) sin 
i
/ [ 32.2 ( 0.002378 ) ( 0.000341 ) ( 1.62 )}
ln { 1 + t / { 2 ( 0.0042 ) / [ 32.2 ( 0.002378 ) ( 0.000341 ) ( 1.62 ) ( 25.8 )]} + h
i – 32.2 t
2
/ 2 = 199 sin 
i ln ( 1 + 0.130 t ) + h
i – 32.2 t
2
/ 2
Assume 
i
= 45 deg, t = t
impact
= 0.9 sec

R
x
= 199 ( 0.707 ) ln [ 1 + 0.130 ( 0.9 )] = 15.5 ft

h = 199 ( 0.707 ) ln [ 1 + 0.130 ( 0.9 )] + h
i
– 32.2 ( 0.9 )
2
/ 2 = h
i
+2.5

10/19/24 ELF 60
Soda Straw Rocket Range Driven by Length,
Gauge Pressure, Valve Open Time , and Weight
-0.4
-0.2
0
0.2
0.4
0.6
0.8
l pgauge tau W CD0
Nondimensional
Range
Sensitivity to
Parameter
Note: Soda Straw Rocket Baseline:
W = Weight = 0.0042 lb
l = length = 5 in
 = Time constant to open valve =
0.2 sec
p
gauge
= gauge pressure = 20 psi
V = Launch Velocity = 25.8 fps
C
D
0
= Zero-lift drag coefficient =
1.62

i
= Initial flight path angle = 45 deg
t
impact
= Time from launch to impact
= 0.9 sec
R
x
= Horizontal range = 15.5 ft
Example: 10% increase in rocket length
 7.1% increase in range

10/19/24 ELF 61
Outline
Examples of Parameters and Technologies That Drive
Missile Flight Performance
Missile Flight Performance Prediction
Examples of Maximizing Missile Flight Performance
( Workshop )
Summary

10/19/24 ELF 62
Summary
Flight Performance Analysis Activity in Missile Design and Analysis
Compute Range, Velocity, Time-to-Target, Off Boresight
Compare with Requirements and Data
Maximizing Flight Performance Strongly Impacted by
Aerodynamics
Propulsion
Weight
Flight Trajectory
Lecture Topics
Aerodynamics Parameters, Prediction and Technologies
Drag Coefficient
Normal Force Coefficient
Propulsion Parameters, Prediction, and Technologies
Thrust
Specific Impulse

10/19/24 ELF 63
Summary ( cont )
Lecture Topics ( continued )
Flight Performance Parameters and Technologies
Cruise Range
High Density Fuel and Packaging
Flight Trajectory Shaping
Range Sensitivity to Driving Parameters
Missile Follow-on Programs
Examples of State-of-the-Art Advancements
Summary of New Technologies
Flight Performance Envelope
Videos of Flight Performance
Modeling of Degrees of Freedom
Equations of Motion and Flight Performance Drivers
Steady State Flight Relationships
Flight Performance Prediction
Steady Climb and Steady Dive Range Prediction
Cruise Prediction

10/19/24 ELF 64
Summary ( cont )
Lecture Topics ( continued )
Flight Performance Prediction ( continued )
Boost Prediction
Coast Prediction
Ballistic Flight Prediction
Turn Prediction
Target Lead for Proportional Homing Guidance
Tactical Missile Design Spreadsheet
Workshop Examples
Rocket Boost-Coast Range
Rocket Maneuverability
Rocket Ballistic Range
Rocket Trajectory Optimization
Soda Straw Rocket Design, Build, and Fly

10/19/24 ELF 65
Configuration Sizing Criteria for Maximizing
Flight Performance
Body Fineness Ratio5 < l / d < 25
Nose Fineness Ratiol
N
/ d  2 if M > 1
Efficient Cruise Dynamic Pressureq < 700 psf
Missile Homing VelocityV
M / V
T > 1.5
Subsystems Packaging Maximize available volume for fuel / propellant
Trim Control Power /  > 1
Missile Maneuverabilityn
M / n
T > 3

10/19/24 ELF 66
Bibliography 0f Reports and Web Sites
“Missile.index,” http://www.index.ne.jp/missile_e/
AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 1993.
Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice, “Principles of Guided Missile
Design”, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1956
Chin, S.S., Missile Configuration Design, McGraw-Hill Book Company, New York, 1961
Mason, L.A., Devan, L., and Moore, F.G., “Aerodynamic Design Manual for Tactical Weapons,” NSWCTR 81-156, 1981
Pitts, W.C., Nielsen, J.N., and Kaattari, G.E., “Lift and Center of Pressure of Wing-Body-Tail Combinations at
Subsonic, Transonic, and Supersonic Speeds,” NACA Report 1307, 1957.
Jorgensen, L.H., “Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like, and Other Bodies at
Angles of Attack From 0 to 180,” NASA TND 6996, January 1973
Hoak, D.E., et al., “USAF Stability and Control Datcom,” AFWAL TR-83-3048, Global Engineering Documents, Irvine,
CA, 1978
“Nielsen Engineering & Research (NEAR) Aerodynamic Software Products,”
http://www.nearinc.com/near/software.htm
Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design, “Principles of Guided Missile Design”,
D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960
Schneider, S.H., Encyclopedia of Climate and Weather, Oxford University Press, 1996
Klein, L.A., Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Boston, 1997
US Army Ordnance Pamphlet ORDP-20-290-Warheads, 1980
Nicholas, T. and Rossi, R., “US Missile Data Book, 1996,” Data Search Associates, 1996
Bithell, R.A., and Stoner, R.C., “Rapid Approach for Missile Synthesis,” AFWAL TR 81-3022, Vol. I, March 1982
Fleeman, E.L. and Donatelli, G.A., “Conceptual Design Procedure Applied to a Typical Air-Launched Missile,” AIAA
81-1688, August 1981
Hindes, J.W., “Advanced Design of Aerodynamic Missiles ( ADAM ),” October 1993

10/19/24 ELF 67
Bibliography of Reports and Web Sites ( cont )
Bruns, K.D., Moore, M.E., Stoy, S.L., Vukelich, S.R., and Blake, W.B., “Missile Datcom,” AFWAL-TR-91-3039, April 1991
Moore, F.G., et al, “Application of the 1998 Version of the Aeroprediction Code,” Journal of Spacecraft and Rockets,
Vol. 36, No. 5, September-October 1999
Fleeman, E.L., “Tactical Missile Design,” American Institute of Aeronautics and Astronautics, Reston, VA, 2001
Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, New York, 1974
“Missile System Flight Mechanics,” AGARD CP270, May 1979
Hogan, J.C., et al., “Missile Automated Design ( MAD ) Computer Program,” AFRPL TR 80-21, March 1980
Rapp, G.H., “Performance Improvements With Sidewinder Missile Airframe,” AIAA Paper 79-0091, January 1979
Nicolai, L.M., Fundamentals of Aircraft Design, METS, Inc., San Jose, CA, 1984
Lindsey, G.H. and Redman, D.R., “Tactical Missile Design,” Naval Postgraduate School, 1986
Lee, R. G., et al, Guided Weapons, Third Edition, Brassey’s, London, 1998
Giragosian, P.A., “Rapid Synthesis for Evaluating Missile Maneuverability Parameters,” 10th AIAA Applied
Aerodynamics Conference, June 1992
Fleeman, E.L. “Aeromechanics Technologies for Tactical and Strategic Guided Missiles,” AGARD Paper presented at
FMP Meeting in London, England, May 1979
Raymer, D.P., Aircraft Design, A Conceptual Approach, American Institute of Aeronautics and Astronautics, Reston, VA,
1989
Ball, R.E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, American Institute of Aeronautics
and Astronautics, Reston, VA, 1985
Eichblatt, E.J., Test and Evaluation of the Tactical Missile, American Institute of Aeronautics and Astronautics, Reston,
VA, 1989
“DoD Index of Specifications and Standards,” http://stinet.dtic.mil/str/dodiss4_fields.html“
Periscope,” http://www.periscope.usni.com

10/19/24 ELF 68
Bibliography of Reports and Web Sites ( cont )
Defense Technical Information Center, http://www.dtic.mil/
“Aircraft Stores Interface Manual (ASIM),” http://www.asim.net
“Advanced Sidewinder Missile AIM-9X Cost Analysis Requirements Description (CARD),”
http://web2.deskbook.osd.mil/valhtml/2/2B/2B4/2B4T01.htm
Briggs, M.M., Systematic Tactical Missile Design, Tactical Missile Aerodynamics: General Topics, “AIAA Vol. 141
Progress in Astronautics and Aeronautics,” American Institute of Aeronautics, Reston, VA, 1992
Briggs, M.M., et al., “Aeromechanics Survey and Evaluation, Vol. 1-3,” NSWC/DL TR-3772, October 1977
“Missile Aerodynamics,” NATO AGARD LS-98, February 1979
“Missile Aerodynamics,” NATO AGARD CP-336, February 1983
“Missile Aerodynamics,” NATO AGARD CP-493, April 1990
“Missile Aerodynamics,” NATO RTO-MP-5, November 1998
Nielsen, J.N., Missile Aerodynamics, McGraw-Hill Book Company, New York, 1960
Mendenhall, M.R. et al, “Proceedings of NEAR Conference on Missile Aerodynamics,” NEAR, 1989
Nielsen, J.N., “Missile Aerodynamics – Past, Present, Future,” AIAA Paper 79-1818, 1979
Dillenius, M.F.E., et al, “Engineering-, Intermediate-, and High-Level Aerodynamic Prediction Methods and
Applications,” Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October, 1999
Nielsen, J.N., and Pitts, W.C., “Wing-Body Interference at Supersonic Speeds with an Application to Combinations
with Rectangular Wings,” NACA Tech. Note 2677, 1952
Burns, K. A., et al, “Viscous Effects on Complex Configurations,” WL-TR-95-3060, 1995
“A Digital Library for NACA,” http://naca.larc.gov
Spreiter, J.R., “The Aerodynamic Forces on Slender Plane-and Cruciform-Wing and Body Combinations”, NACA
Report 962, 1950
Simon, J. M., et al, “Missile DATCOM: High Angle of Attack Capabilities, AIAA-99-4258.

10/19/24 ELF 69
Bibliography of Reports and Web Sites ( cont )
Lesieutre, D., et al, “Recent Applications and Improvements to the Engineering-Level Aerodynamic Prediction Software
MISL3,’’ AIAA-2002-0274
Sutton, G.P., Rocket Propulsion Elements, John Wiley & Sons, New York, 1986
“Tri-Service Rocket Motor Trade-off Study, Missile Designer’s Rocket Motor handbook,” CPIA 322, May 1980
Chemical Information Propulsion Agency, http://www.jhu.edu/~cpia/index.html

10/19/24 ELF 70
Follow-up Communication
I would appreciate receiving your comments and corrections on this
text, as well as any data, examples, or references that you may offer.
Thank you,
Gene Fleeman
4472 Anne Arundel Court
Lilburn, GA 30047
Telephone: +1 770-925-4635 ( home )
+1 404-894-7777 ( work )
Fax: +1 404-894-6596
E-mail: [email protected] ( home )
[email protected] ( work )
Web Site: http://www.asdl.gatech.edu
Tags