Maximos y minimos funcion de varias variables

29,085 views 29 slides Mar 27, 2016
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

ALGEBRA LINEAL


Slide Content

FACULTAD:
INGENIERÍA
ESCUELA:
INGENIERÍA DE COMPUTACIÓN Y SISTEMAS
TEMA
APLICACIONES DE LA DERIVADA: MÁXIMOS Y
MÍNIMOS DE FUNCIONES DE VARIAS VARIABLES
INTEGRANTES:
 CABALLERO CRUZ, IVONNE
 CÁRDENAS GONZÁLEZ, RAQUEL
 CORNEJO URBINA, ESTRELLITA
 GALLARDO GABRIEL, FLAVIO
 LÓPEZ DOMINGUEZ, DONATILA
 QUILICHE ZELADA, LUIS
 SEVILLANO TALAVERA, RENATO
 TIRADO CUENCA, HENRRY
DOCENTE:
 GARCIA POLANCO, LUIS

TRUJILLO-PERÚ
2015

MÁXIMOS Y MÍNIMOS

II






DEDICATORIA

A nuestros padres, quienes a lo largo de nuestra vida
Velan por nuestro bienestar y educación
siendo nuestro apoyo en todo momento.
Ellos depositan toda su confianza
en cada reto que se nos presenta
sin dudar ni un solo momento
de nuestra capacidad.

MÁXIMOS Y MÍNIMOS

III





AGRADECIMIENTO

A nuestra Alma Mater Universidad Privada
Antenor Orrego y a nuestro docente
García Polanco, Luis por la enorme
paciencia al enseñarnos durante
todo el ciclo y guiarnos
en nuestro trabajo.

MÁXIMOS Y MÍNIMOS

IV

PRESENTACIÓN

El presente trabajo se ha realizado con el motivo de brindar información sobre
LAS APLICACIONES DE LA DERIVADAS en lo que respecta a MAXIMOSY
MINIMOS RELATIVOS ya que en nuestra carrera es esencial la matemática y muchos
alumnos no sabemos cómo realizar los ejercicios ni que teoremas aplicar o escoger que
método es el más apropiado para resolver los
Deseosos de superarnos académicamente y con la finalidad de lograr el objetivo
trazado de dar a conocer las diferentes definiciones, teoremas para así lograr que los
que tengan acceso a este material entiendan cómo se resuelve cada ejercicio y que
método es el más apropiado y fácil.

Los autores

MÁXIMOS Y MÍNIMOS

V

ÍNDICE
DEDICATORIA ................................................................................................................. II
AGRADECIMIENTO ........................................................................................................ III
PRESENTACIÓN .............................................................................................................. IV
INTRODUCCIÓN ...............................................................................................................6
MÁXIMOS Y MÍNIMOS DE FUNCIONES DE VARIAS VARIABLES .................................................................7
1. DEFINICIÓN.- .........................................................................................................7
2. DEFINICIÓN.- .........................................................................................................7
3. DEFINICIÓN.- .........................................................................................................7
4. DEFINICIÓN.- .........................................................................................................7
TEOREMA ......................................................................................................................8
DEMOSTRACIÓN ..........................................................................................................8
PUNTOS CRÍTICOS...................................................................................................... 10
 CRITERIO DE LA SEGUNDA DERIVADA ........................................................ 10
MATRIZ HESSIANA DE UNA FUNCIÓN DE VARIAS VARIABLES .............................. 11
1. HISTORIA ............................................................................................................. 11
2. SIGNIFICADO DE CADA ELEMENTO DE LA MATRIZ HESSIANA ................... 12
3. ENCONTRAR MÁXIMOS Y MÍNIMOS UTILIZANDO MATRICES HESSIANAS . 13
4. DEFINICIÓN.- ....................................................................................................... 13
5. DEFINICIÓN.- ....................................................................................................... 14
6. DEFINICIÓN.- ....................................................................................................... 15
7. CRITERIO DE LA MATRIZ HESSIANA PARA LOS MÁXIMOS Y MÍNIMOS ..... 16
MÉTODO DE LOS MULTIPLICADORES DE LAGRANGE .............................................. 18
1. HISTORIA ............................................................................................................. 18
2. DEFINICIÓN.- ....................................................................................................... 18
CONDICIONES DE KUHN – TUCKER ............................................................................. 24
1. HISTORIA ............................................................................................................. 24
2. DEFINICIÓN.- ....................................................................................................... 24
CONCEPTOS CLAVE ................................................................................................................. 27
ANEXOS .......................................................................................................................... 29

MÁXIMOS Y MÍNIMOS

6

INTRODUCCIÓN

Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de
hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo
diferencial es posible encontrar respuestas a estos problemas, que de otro modo parecían
imposibles su solución, por lo tanto en este apartado hablaremos sobre los valores
máximos y mínimos de una función de varias variables. En numerosas ocasiones
encontraremos fenómenos que dependen del valor de una sola variable (el tamaño de un
potro que varía solamente con respecto al tiempo transcurrido). Sin embargo, podremos
también enfrentarnos a situaciones en las que han de considerarse dos o más variables
Para encontrar máximos, mínimos y puntos de silla en funciones de varias variables
existen muchos métodos donde se dará a conocer de manera detallada el discriminante,
hessiano o matriz hessiana, Método de los Multiplicadores de LaGrange y una breve
reseña histórica y biográfica acerca del creador o inventor de las matrices hessianas y el
método de Método LaGrange también se detallara como encontrar máximos y mínimos
utilizando matrices hessianas ,el significado de los elementos de esta .Luego se presenta
cada paso de cómo resolver funciones de dos o más variables, haciendo uso de la
matriz hessiana, se expone ejemplos de aplicación para dicha teoría. Finalmente además
se adiciona el método de Kuhn – Tucker se expone ejemplos para la aplicación de dicho
método.

MÁXIMOS Y MÍNIMOS

7

MÁXIMOS Y MÍNIMOS DE FUNCIONES DE VARIAS VARIABLES
Existen varias definiciones a continuación presentamos las más importantes
1. DEFINICIÓN.- La función �:?????? �
2
→� definida en un conjunto abierto,
?????? �
2
tiene un valor máximo absoluto sobre el conjunto si existe un punto
�(�
0
,�
0
)∈?????? tal que �(�
0
,�
0
)≤ �(�
0
,�
0
), (�,�) ∈?????? en este caso
�(�
0
,�
0
) Es el valor máximo absoluto de � �� ??????.

2. DEFINICIÓN.- La función �:?????? �
2
→� la definida en un conjunto abierto
?????? �
2
tiene un mínimo absoluto sobre el conjunto ?????? �
2
si existe un punto
�(�
0
,�
0
)∈?????? tal que �(�
0
,�
0
)≤ �(�
0
,�
0
), (�,�) ∈?????? en este caso
�(�
0
,�
0
) es el valor mínimo absoluto de � �� ??????.



3. DEFINICIÓN.- La función �:?????? �
�
→� definida en un conjunto abierto
?????? �
�
tiene un valor mínimo relativo en el punto �⃗
0∈?????? si existe una bola
abierta � (�⃗
0
,??????) ?????? tal que �(�⃗
0
)≤ �(�⃗),∀ �⃗ ∈ � (�⃗
0
,??????) ??????.

4. DEFINICIÓN.- La función �:?????? �
�
→� definida en un conjunto abierto
?????? �
�
tiene un valor máximo relativo en el punto �⃗
0
∈?????? si existe una bola
abierta � (�⃗
0
,??????) ??????, tal que �(�⃗)≤�(�⃗
0
),∀ �⃗ ∈ � (�⃗
0
,??????) ??????.


OBSERVACIÓN Si la función �:?????? �
2
→� es continua en un conjunto cerrado
?????? �
2
entonces existe al menos un punto donde tiene un valor máximo absoluto y al menos
un punto �∈ ?????? donde tiene un mínimo valor absoluto.

OBSERVACIÓN A los máximos y mínimos relativos de la función �:?????? �
�
→� le
llamaremos extremos de la función �

MÁXIMOS Y MÍNIMOS

8

TEOREMA



DEMOSTRACIÓN

Si la función � tiene un valor máximo relativo � (�⃗
0
,??????) ?????? en entonces tal que
�(�⃗)≤�(�⃗
0
),∀ �⃗ ∈ � (�⃗
0
,??????) ?????? luego lim
ℎ→0
�(�⃗+ℎ??????⃗⃗⃗
�)
−�(�⃗)

≤0 donde �⃗
�

= (0,0,…, 1,0…) esto es debido a que , para cada (�⃗+ℎ�⃗
�)
∈ � (�⃗
0
,??????)
se tiene �(�⃗+ℎ�⃗
�
)≤ �(�⃗
0
) esto nos implica que ℎ>0 se tiene que
�(�⃗+ℎ??????⃗⃗⃗
�)
−�(�⃗)

≤0 ahora si ℎ<0, entonces lim
ℎ→0
&#3627408467;(&#3627408485;⃗+ℎ??????⃗⃗⃗
&#3627408472;)
−&#3627408467;(&#3627408485;⃗)

≥0 ,
como ??????
&#3627408472;
&#3627408467;(&#3627408485;⃗
0
) existe se tiene que: ??????
&#3627408472;
&#3627408467;(&#3627408485;⃗
0
)=lim
ℎ→0
&#3627408467;(&#3627408485;⃗+ℎ??????⃗⃗⃗
&#3627408472;)
−&#3627408467;(&#3627408485;⃗)

=
lim
ℎ→0
&#3627408467;(&#3627408485;⃗+ℎ??????⃗⃗⃗
&#3627408472;)
−&#3627408467;(&#3627408485;⃗)

=0 donde ??????
&#3627408472;
&#3627408467;(&#3627408485;⃗
0
)=0 por lo tanto, los valores extremos de una
función &#3627408467;:?????? &#3627408453;
&#3627408475;
→&#3627408453; defina en el conjunto abierto ?????? puede ocurrir en puntos
donde la primeras derivadas de f son ceros.

5. DEFINICIÓN.- Sea la función &#3627408467;:?????? &#3627408453;
&#3627408475;
→&#3627408453; definida en un conjunto de
abierto ?????? &#3627408453;
&#3627408475;
. Los puntos &#3627408485;⃗
0
?????? donde todas las derivadas parciales de primer orden de f
son ceros o no existen, se llaman puntos estacionarios o puntos críticos de &#3627408467;

EJEMPLO.- Hallar los puntos críticos o estacionarios de la función
&#3627408467; (&#3627408485;,&#3627408486;)=&#3627408485;
2
&#3627408486;
2
−5&#3627408485;
2
−8&#3627408485;&#3627408486;−5&#3627408486;
2


SOLUCIÓN
{

??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=0
??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
=0
, para calcular los puntos críticos o estacionarios
{

??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=2&#3627408485;&#3627408486;
2
−10&#3627408485;−8&#3627408486;=0…(1)
??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
=2&#3627408485;
2
&#3627408486;−8&#3627408485;−10&#3627408486;=0…(2)


Si la función &#3627408467;:?????? &#3627408453;
&#3627408475;
→&#3627408453; definida en conjunto abierto ?????? &#3627408453;
&#3627408475;
tiene un valor
extremo &#3627408485;⃗
0
∈?????? &#3627408486; ??????
&#3627408472;
&#3627408467;(&#3627408485;⃗
0
) y existe entonces ??????
&#3627408472;
&#3627408467;(&#3627408485;⃗
0
)=0,∀&#3627408472;=1,2,3,…,&#3627408475;

MÁXIMOS Y MÍNIMOS

9

De la ecuación (1) despejamos &#3627408485;=
8&#3627408486;
2&#3627408486;
2
−10
=
4&#3627408486;
&#3627408486;
2
−5
ahora reemplazamos en (2)
2&#3627408486;(
4&#3627408486;
&#3627408486;
2
−5
)
2
−8(
4&#3627408486;
&#3627408486;
2
−5
)-10y=0, simplificando &#3627408486;(&#3627408486;
4
−10&#3627408486;
2
+9)=0 entonces:
&#3627408486;(&#3627408486;
2
−9)(&#3627408486;
2
−1)=0, de donde &#3627408486;=0,&#3627408486;=±1,&#3627408486;=±3
Para &#3627408486;=0,&#3627408485;=0,(0,0);para &#3627408486;=1,&#3627408485;=−1,(−1,1)
&#3627408486;=1,&#3627408485;=−1,(−1,1), &#3627408486;=−3,&#3627408485;=−3,(−3,−3)
&#3627408486;=3,&#3627408485;=3,(3,3)
Los puntos críticos son (0,0), (-1,1), (1,-1), (-3,-3), (3,3)

OBSERVACIÓN.- La condición necesaria para que una función tenga extremo relativo
en un punto, donde sus derivadas parciales existen, es que este punto sea un punto
estacionario o crítico, sin embargo esta condición no es suficiente, por ejemplo, la
función &#3627408467;(&#3627408485;,&#3627408486;)=&#3627408486;
2
−&#3627408485;
2
cuyas derivadas parciales son:
{

∂f(x,y)
∂x
=−2x=0
∂f(x,y)
∂y
=2y=0
de donde &#3627408485;=&#3627408486;=0
a pesar de esto la función no tiene máximo ni mínimo relativo, en este caso, a este tipo
de puntos se denominan puntos de silla.
GRÁFICA DEL LIBRO





OBSERVACIÓN.- Un punto crítico que no es de un máximo o mínimo relativo es
llamado punto silla (o de monitor).

MÁXIMOS Y MÍNIMOS

10

PUNTOS CRÍTICOS
 CRITERIO DE LA SEGUNDA DERIVADA

Sea f: D ⊂ R
2
R una función definida en el conjunto abierto D de tal manera que las
derivadas parciales primeras y segundas de f sean continuas en la relación abierta.
Contienes un punto (a,b) tal que
??????&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485;
=0 &#3627408486;
??????&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408486;
= 0, para determinar si en dicho
punto hay un extremo relativo de f, definimos la cantidad.
∆=
??????
2
(&#3627408462;,&#3627408463;)
??????&#3627408485;
2
.
&#3627408467;??????
2
(&#3627408462;,&#3627408463;)
??????&#3627408486;
2
–(
??????
2
&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408486;??????&#3627408485;
)
2

i) si ∆>0 y
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485;2
>0, entonces f(a, b) es un valor mínimo relativo.
ii) si ∆>0 y
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485;2
<0, entonces f(a, b) es un valor máximo relativo.
iii) si ∆<0, entonces (a, b), f(a, b) es un punto de silla.
iv) si ∆=0, este criterio no da información.
En forma práctica se puede recordar la formula ∆ en el criterio de la segunda derivada y
que viene lado por el determinante.
∆=|
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485;2
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408486; ??????&#3627408485;
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485; ??????&#3627408486;
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408486;2
| siendo
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408486; ??????&#3627408485;
=
??????2&#3627408467;(&#3627408462;,&#3627408463;)
??????&#3627408485; ??????&#3627408486;

EJEMPLO.- Determinar los extremos relativos de la función &#3627408467;(&#3627408485;,&#3627408486;)=&#3627408485;
2
+&#3627408485;&#3627408486;+
&#3627408486;
2
−6&#3627408485;+2
SOLUCIÓN
Calculando los puntos críticos o estacionarios
{

??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=2&#3627408485;+&#3627408486;−6=0
??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
= &#3627408485;+2&#3627408486; = 0
 {
&#3627408485;=4
&#3627408486;=−2
 &#3627408477;(4,−2)
Luego el punto crítico es p (4,-2)

MÁXIMOS Y MÍNIMOS

11

{








2
f(x,y)
∂&#3627408485;
2
=2

2
f(x,y)
∂&#3627408486;
2
=2 

2
f(x,y)
∂y∂x
=1

{








2
∂f(4−2)
∂&#3627408485;
2
=2

2
f(4−2)
∂&#3627408486;
2
=2

2
f(4−2)
∂y∂x
=1


Ahora aplicando el criterio de la segunda derivada
∆=
??????
2
&#3627408467;(4,−2)
??????&#3627408485;
2
.
??????
2
&#3627408467;(4,−2)
??????&#3627408486;
2
–(
??????
2
&#3627408467;(4,−2)
??????&#3627408486;??????&#3627408485;
)
2

∆=(2)(2)−(1)
2
= 4-1-3  ∆=3
Como ∆=3>0 y

2
f(4−2)
∂&#3627408485;
2
= 2 >0, entonces en el punto &#3627408451;(4,−2) hay un mínimo
relativo, cuyo valor mínimo es ??????(??????,−&#3627409360;)=&#3627409359;&#3627409358;
MATRIZ HESSIANA DE UNA FUNCIÓN DE
VARIAS VARIABLES

1. HISTORIA

El hessiano, conocido también como discriminante o
matriz hessiana, fue introducido en el año de 1844 por Hess,
matemático alemán quien nació en 1811 y murió en 1874.
Esto sucedió luego de que Carl Gustav Jacob Jacobi (1804-
1851) introduje jacobianos”. Lo que hizo Jacobi con de
variable de las integrales múltiples en términos de estos.
Respecto a los detalles biográficos de Ludwig
Otto Hess se sabe que nació precisamente en
Konigsberg, Alemania (actualmente Rusia) el 22 de abril
de 1811. Estudió con Jacobi en su ciudad natal (Konigsberg), donde se desempeñó
primero comomaestro de física y química; posteriormente como profesor. En 1856 se
trasladó a Heidelberg, donde permaneció doce años, antes de tomar un puesto en
Munich, donde falleció el 4 de agosto de 1874.
Ludwig Otto Hess se hizo tan famoso por una matriz que introdujo en un
artículo de 1842 referido a curvas cúbicas y cuadráticas.
Ludwig Otto Hess (1811-
1874)

MÁXIMOS Y MÍNIMOS

12

2. SIGNIFICADO DE CADA ELEMENTO DE LA MATRIZ
HESSIANA

Con el objetivo de explicar cada detalle con la mayor claridad posible, se
expresa el significado de cada uno de los elementos que aparecen dentro de la matriz:

 ??????
&#3627408537;&#3627408537;
Significa que se deriva la función original por primera vez con respecto a x
y luego ese resultado se deriva por segunda vez con respecto a x nuevamente.

 ??????
&#3627408537;&#3627408538;
Significa que se deriva la función original por primera vez con respecto a
y y luego ese resultado se deriva por segunda vez pero ahora con respecto a x.

 ??????
&#3627408537;&#3627408539; Significa que se deriva la función original por primera vez con respecto a
z y luego ese resultado se deriva por segunda vez pero ahora con respecto a x.
 ??????
&#3627408538;&#3627408537;
Significa que se deriva la función original por primera vez con respecto a
x y luego ese resultado se deriva por segunda vez pero ahora con respecto a y.

 ??????
&#3627408538;&#3627408538;
Significa que se deriva la función original por primera vez con respecto a y
y luego ese resultado se deriva por segunda vez con respecto a y nuevamente.

 ??????
&#3627408538;&#3627408539;
Significa que se deriva la función original por primera vez con respecto a z
y luego ese resultado se deriva por segunda vez pero ahora con respecto a y.

 ??????
&#3627408539;&#3627408537;
Significa que se deriva la función original por primera vez con respecto a x
y luego ese resultado se deriva por segunda vez pero ahora con respecto a z.

 ??????
&#3627408539;&#3627408538;
Significa que se deriva la función original por primera vez con respecto a y
y luego ese resultado se deriva por segunda vez pero ahora con respecto a z.

 ??????
&#3627408539;&#3627408539;
Significa que se deriva la función original por primera vez con respecto a z
y luego ese resultado se deriva por segunda vez con respecto a z nuevamente.

NOTA: Tome en cuenta que las siguientes se denominan derivadas mixtas o cruzadas
y si existen son iguales: ??????
&#3627408537;&#3627408538;=??????
&#3627408538;&#3627408537;,??????
&#3627408537;&#3627408539;=??????
&#3627408539;&#3627408537;,??????
&#3627408538;&#3627408539;=??????
&#3627408538;&#3627408539;

MÁXIMOS Y MÍNIMOS

13

3. ENCONTRAR MÁXIMOS Y MÍNIMOS UTILIZANDO
MATRICES HESSIANAS



a) Tener la función original que se va a trabajar.

b) Calcular las primeras derivadas parciales de la función con respecto a cada una de
las variables que se tiene la función original.

c) Igualar a cero las derivadas que se calcularon en el inciso anterior.

d) Simultanear las ecuaciones generadas en la igualación a cero, para encontrar el
valor de cada una de las variables. Dichos valores para cada una de las variables serán
las coordenadas de los puntos críticos.

e) Una vez se tienen los puntos críticos se debe calcular las segundas derivadas
parciales en cada uno de estos puntos, para identificar los elementos de la matriz
hessiana, ya sea matriz 2 x 2 (si la función es de dos variables), 3 x 3 (si la función es
de tres variables), 4 x 4 (si la función es de cuatro variables), n x n (si la función es de
n variables).

f) Resolver el determinante de la matriz, el resultado que se obtenga será la respuesta.

g) Con la respuesta se puede clasificar el punto

4. DEFINICIÓN.- Una forma cuadrática, ??????:&#3627408453;
&#3627408475;
→&#3627408453; es una función cuyo valor
en &#3627408462;=(&#3627408462;
1
,&#3627408462;
2
,…,&#3627408462;
&#3627408475;
) es dado por: ??????=(&#3627408462;)∑∑ℎ
&#3627408470;&#3627408471;
n
i=0
&#3627408462;
&#3627408470;
&#3627408462;
&#3627408471;
&#3627408475;
&#3627408470;=0
donde H=
[ℎ
&#3627408470;&#3627408471;
]
&#3627408475;&#3627408485;&#3627408475;
es una matriz simétrica de orden &#3627408475;&#3627408485;&#3627408475; esto es:
H= [ℎ
&#3627408470;&#3627408471;
]
&#3627408475;&#3627408485;&#3627408475;
=
[








11

12
… ℎ
1&#3627408475;

21

22
… ℎ
2&#3627408475;

.
.
.

&#3627408475;1

&#3627408475;2
… ℎ
&#3627408475;&#3627408474;


]






y ??????

=??????
En forma simétrica la forma cuadrática está definida por:

MÁXIMOS Y MÍNIMOS

14

F(&#3627408462;)=&#3627408462; ??????&#3627408462;

=(&#3627408462;
1
,…,&#3627408462;
&#3627408475;
)
[








11

12
… ℎ
1&#3627408475;

21

22
… ℎ
2&#3627408475;

.
.
.

&#3627408475;1

&#3627408475;2
… ℎ
&#3627408475;&#3627408475;


]






=
[






&#3627408462;
1
&#3627408462;
2

.
.
.
&#3627408462;
&#3627408475;


]






= ∑∑ℎ
&#3627408470;&#3627408471;
n
i=0
&#3627408462;
&#3627408470;
&#3627408462;
&#3627408471;
&#3627408475;
&#3627408470;=0





EJEMPLO.- Hallar la matriz correspondiente a la forma cuadrática ??????:&#3627408453;
2
→&#3627408453;
definida por
??????(&#3627408485;
1
,&#3627408485;
2
)=&#3627408485;
1
2
−&#3627408485;
1
&#3627408485;
2
+3&#3627408485;
2
2

SOLUCIÓN
Observar que ℎ
12
es la mitad del coeficiente (-1) es decir ℎ
12
=−1/2 como la
matriz es simétrica ℎ
12
=ℎ
21

Luego ??????=[
1−
1
2

1
2
3
]
EJEMPLO.- Hallar la matriz correspondiente a la forma cuadrática ??????:&#3627408453;
3
→ &#3627408453;
definida por: ??????(&#3627408485;
1 ,&#3627408485;
2,&#3627408485;
3
)= &#3627408485;
1
2
+&#3627408485;
2
&#3627408485;
+&#3627408485;
3
2
,&#3627408485;
1&#3627408485;
2+2&#3627408485;
13+6&#3627408485;
2&#3627408485;3
SOLUCIÓN
??????=
[




1−
1
2
1

1
2
1 3
1 3 1

]






5. DEFINICIÓN.- Sea &#3627408467;:??????

&#3627408453;
&#3627408475;
→&#3627408453; , una función definida en el conjunto
abierto ??????. Entonces la diferencial de segundo orden con respecto a las variables
Independientes &#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
es cero, es decir: &#3627408465;&#3627408487;=&#3627408465;&#3627408467;=
??????&#3627408467;
??????&#3627408485;
1
&#3627408465;&#3627408485;
1
+
??????&#3627408467;
??????&#3627408485;
2
&#3627408465;&#3627408485;
2

OBSERVACIÓN.- Se observa que el desarrollo de una forma cuadrática en términos de las
variables &#3627408462;
1,&#3627408462;
2,…,&#3627408462;
&#3627408475; corresponde a un polinomio homogéneo de grado 2, en donde los
coeficientes de los términos cuadráticos (&#3627408462;
&#3627408470;
2
)son los elementos de la diagonal de la matriz
simétrica H, y cada coeficiente de un término rectangular &#3627408462;
&#3627408470;
&#3627408462;
&#3627408471;
el doble del elemento ℎ
&#3627408470;&#3627408471;

de la misma matriz (&#3627408470;≠&#3627408471;)

MÁXIMOS Y MÍNIMOS

15

&#3627408465;
2
&#3627408487;=&#3627408465;
2
&#3627408467;=
??????
??????&#3627408485;
1
(
??????&#3627408467;
??????&#3627408485;
1
&#3627408465;&#3627408485;
1
+
??????&#3627408467;
??????&#3627408485;
2
&#3627408465;&#3627408485;
2
)&#3627408465;&#3627408485;
1
+
??????
??????&#3627408485;
2
(
??????&#3627408467;
??????&#3627408485;
1
&#3627408465;&#3627408485;
1
+
??????&#3627408467;
??????&#3627408485;
2
&#3627408465;&#3627408485;
2
)&#3627408465;&#3627408485;
2
=
??????
2
&#3627408467;
??????&#3627408485;
1
2
&#3627408465;&#3627408485;
1
&#3627408465;&#3627408485;
1
+
??????
2
&#3627408467;
??????&#3627408485;
1
??????&#3627408485;
1
&#3627408465;&#3627408485;
2
&#3627408465;&#3627408485;
1
+
??????
2
&#3627408467;
??????&#3627408485;
2
??????&#3627408485;
1
&#3627408465;&#3627408485;
1
&#3627408465;&#3627408485;
2
+
??????
2
&#3627408467;
??????&#3627408485;
2
2
&#3627408465;&#3627408485;
2
&#3627408465;&#3627408485;
2
=∑∑
??????
2
&#3627408467;
??????&#3627408485;
&#3627408470;
??????&#3627408485;
&#3627408471;
2
&#3627408467;=1
2
&#3627408470;=??????
&#3627408465;&#3627408485;
&#3627408470;
&#3627408465;&#3627408485;
&#3627408471;

La matriz correspondiente a esta forma cuadrática es:
??????=
[




??????
2
&#3627408467;
??????&#3627408485;
2
??????
2
??????&#3627408485;
1
??????&#3627408485;
2
??????
2
&#3627408467;
??????&#3627408485;
2
??????&#3627408485;
1
??????
2
&#3627408467;
??????&#3627408485;
2
2
]





Esta matriz H será simétrica si
??????
2
&#3627408467;
??????&#3627408485;
2
??????&#3627408485;
1
=
??????
2
&#3627408467;
??????&#3627408485;
1
??????&#3627408485;
2

6. DEFINICIÓN.- Consideremos la función &#3627408467;:?????? ⊂ &#3627408453;
&#3627408475;
→&#3627408453; definida en el
conjunto abierto ?????? tal que existen
??????&#3627408467;
??????&#3627408485;
1
y
??????
2
&#3627408467;
??????&#3627408485;
&#3627408470;
??????&#3627408485;
&#3627408471;
∀ &#3627408477;=(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)∈??????
La forma hessiana de la función &#3627408467; en el punto &#3627408477;∈??????, denotado por ?????? (&#3627408467;(&#3627408477;))está
definida por:
??????(&#3627408467;(&#3627408477;))=&#3627408465;
2
&#3627408467;(&#3627408477;)=∑∑
??????
2
&#3627408467;(&#3627408477;)
??????&#3627408485;
&#3627408470;
??????&#3627408485;
&#3627408471;
&#3627408475;
&#3627408471;=&#3627408473;
&#3627408475;
&#3627408470;=&#3627408473;
&#3627408465;&#3627408485;
&#3627408470;
&#3627408465;&#3627408485;
&#3627408471;

Luego a la matriz hessiana de la función en el punto p será:
H (f (p))=
[









??????
2
&#3627408467;
??????&#3627408485;
1
2
??????
2
&#3627408467;
??????&#3627408485;
1
??????&#3627408485;
2

??????
2
&#3627408467;
??????&#3627408485;
1
??????&#3627408485;
??????

??????
2
&#3627408467;
??????&#3627408485;
2
??????&#3627408485;
1

??????
2
&#3627408467;
??????&#3627408485;
2
2&#3627408465;&#3627408485;
1

??????
2
&#3627408467;
??????&#3627408485;
2
??????&#3627408485;
??????

.
.
.

??????
2
&#3627408467;
??????&#3627408485;
??????
??????&#3627408485;
1

??????
2
&#3627408467;
??????&#3627408485;
??????
??????&#3627408485;
2

??????
2
&#3627408467;
??????&#3627408485;
??????
2
]

MÁXIMOS Y MÍNIMOS

16

EJEMPLO.- Hallar la matriz hessiana de la función: &#3627408467;(&#3627408485;,&#3627408486;,&#3627408487;)=&#3627408485;
2
+&#3627408486;
2
+&#3627408487;
2

7&#3627408485;&#3627408486;+5&#3627408485;−3&#3627408487;
SOLUCIÓN

{






??????&#3627408467;
??????&#3627408485;
=2&#3627408485;−7&#3627408486;+5
??????&#3627408467;
??????&#3627408486;
=2&#3627408486;−7&#3627408485;
??????&#3627408467;
??????&#3627408487;
=2&#3627408487;−3

{






??????
2
&#3627408467;
??????&#3627408485;
2
=2,
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408486;
=−7,
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408487;
=0
??????
2
&#3627408467;
??????&#3627408486;
2
=2,
??????
2
&#3627408467;
??????&#3627408486;&#3627408465;&#3627408485;
=−7,
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408486;
=0
??????
2
&#3627408467;
??????&#3627408487;
2
=2,
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408485;
=0,
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408487;
=0

??????(&#3627408467;(&#3627408485;,&#3627408486;,&#3627408487;))=
[






??????
2
&#3627408467;
??????&#3627408485;
2
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408486;
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408487;
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408485;
??????
2
&#3627408467;
??????&#3627408486;
2
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408487;
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408485;
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408486;
??????
2
&#3627408467;
??????&#3627408487;
2
]






=[
2−70
−720
002
]

7. CRITERIO DE LA MATRIZ HESSIANA PARA LOS
MÁXIMOS Y MÍNIMOS

Consideremos la función &#3627408467;:??????⊂&#3627408453;
&#3627408475;
→&#3627408453; , en donde sus derivadas parciales de
segundo orden son continuas en un conjunto abierto ??????⊂&#3627408453;
&#3627408475;
y sea &#3627408485;
0
∈?????? un punto para
el cual ??????
1&#3627408467;(&#3627408485;
0
)=0,??????
2??????(&#3627408485;
0
)=0,….,??????
&#3627408475;&#3627408467;(&#3627408485;
0
)=0, supongamos que el determinante
de la matriz, Hessiana ??????(&#3627408467;(&#3627408485;
0
)) se denota por:

&#3627408475;
=[
??????
11
&#3627408467;(&#3627408485;
0
)??????
12
&#3627408467;(&#3627408485;
0
) …??????
&#3627408473;&#3627408475;
&#3627408467;(&#3627408485;
0
)
??????
21
&#3627408467;(&#3627408485;
0
)??????
22
&#3627408467;(&#3627408485;
0
) …??????
2&#3627408475;
&#3627408467;(&#3627408485;
0
)
??????
&#3627408475;&#3627408473;
&#3627408467;(&#3627408485;
&#3627408476;
) ??????
&#3627408475;2
&#3627408467;(&#3627408485;
0
) … ??????
22
&#3627408467;(&#3627408485;
0
)
]
Entonces
&#3627408485;
0
Corresponde a un mínimo relativo si ∆
1
>0,∆
2
>0,…,∆
&#3627408475;
>0,…, cuyo calor mínimo
es &#3627408467;(&#3627408485;
0
)
&#3627408485;
0
Corresponde a un máximo relativo si ∆
1
<0,∆
2
>0,∆
3
<0,…, cuyo valor máximo es
&#3627408467;(&#3627408485;
0
)

MÁXIMOS Y MÍNIMOS

17

EJEMPLO.- Determinar los extremos relativos de la función
&#3627408467;(&#3627408485;,&#3627408486;,&#3627408487;)=4&#3627408485;+&#3627408485;&#3627408486;−&#3627408485;
2
&#3627408486;
2
&#3627408487;
2
−&#3627408486;&#3627408487;
SOLUCIÓN
Hallaremos los puntos críticos de la función

{




??????&#3627408467;
??????&#3627408485;
=4+&#3627408486;−2&#3627408485;=0
??????&#3627408467;
??????&#3627408486;
=&#3627408485;−2&#3627408486;−&#3627408487;=0 ⟹ {
&#3627408485;=3
&#3627408486;=2 ⇒&#3627408477;(3,2,−1)
&#3627408487;=−1

??????&#3627408467;
??????&#3627408487;
=−&#3627408486;−2&#3627408487;=0
??????
2
&#3627408467;
??????&#3627408485;
2=−2
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408486;
=1
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408487;
=0
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408485;
=1
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408486;
=−2
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408487;
=−1
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408485;
=0
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408486;
=−1
??????
2
&#3627408467;
??????&#3627408487;
2
=−2


∆=
[






??????
2
&#3627408467;
??????&#3627408485;
2
??????
2
&#3627408467;
??????&#3627408485;??????&#3627408486;
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408487;
??????
2
&#3627408467;
??????&#3627408486;??????&#3627408485;
??????
2
&#3627408467;
??????&#3627408486;
2
??????&#3627408467;
??????&#3627408486;??????&#3627408487;
??????
2
&#3627408467;
??????&#3627408487;??????&#3627408485;
??????&#3627408467;
??????&#3627408487;??????&#3627408486;
??????
2
&#3627408467;
??????&#3627408487;
2
]






=[
−210
1−2−1
0−1−2
]

1
=−2<0,∆
2
=3>0,∆
3
=−4<0 Entonces f tiene un máximo relativo en el punto
&#3627408477;(3,2,−1) y sus valores &#3627408467;(3,2,−1)=6
EJEMPLO.- Hallar las dimensiones de una caja rectangular (cerrada) de máximo
volumen cuya
Superficie total es &#3627408436;&#3627408474;
2


SOLUCIÓN
Sean &#3627408485;,&#3627408486;,&#3627408487;las dimensiones de la caja rectangular, por lo tanto el volumen de la caja es
??????=&#3627408485;&#3627408486;&#3627408487;
El área total de la caja rectangular es: &#3627408436;=2&#3627408485;&#3627408486;+2&#3627408485;&#3627408487;+2&#3627408486;&#3627408487;⟹&#3627408487;=
??????−2&#3627408485;&#3627408486;
2&#3627408485;+2&#3627408486;

Como ??????=&#3627408485;&#3627408486;&#3627408487;=
&#3627408485;&#3627408486;(??????−2&#3627408485;&#3627408486;)
2&#3627408485;+2&#3627408486;
,&#3627408485;>0,&#3627408486;>0,&#3627408485;&#3627408486;≤&#3627408436;
El cual se desea que sea máximo

MÁXIMOS Y MÍNIMOS

18

{
????????????
??????&#3627408485;
=
&#3627408486;
2
(2??????−8&#3627408485;&#3627408486;−4&#3627408485;
2
)
(2&#3627408485;+2&#3627408486;)
2
=0
????????????
??????&#3627408485;
=
&#3627408485;
2
(2??????−8&#3627408485;&#3627408486;−4&#3627408486;
2
)
(2&#3627408485;+2&#3627408486;)
=0
Resolviendo el sistema de ecuaciones
&#3627408485;=√
??????
6
,&#3627408486;=√
??????
6
Es un punto crítico de V que corresponde a un máximo relativo cuyo
valor máximo es: ??????=
??????
6

??????
6
??????
3

Luego las dimensiones de la caja son: &#3627408485;=√
??????
6
,&#3627408486;=√
??????
6
,&#3627408487;=√
??????
6

MÉTODO DE LOS MULTIPLICADORES DE
LAGRANGE
1. HISTORIA

En los problemas de optimización, el método de los multiplicadores de Lagrange,
llamados así en honor a Joseph Louis Lagrange, es un procedimiento para encontrar los
máximos y mínimos de funciones de múltiples variables sujetas a restricciones. Este
método reduce el problema restringido con n variables a uno sin restricciones de n + k
variables, donde k es igual al número de restricciones, y cuyas ecuaciones pueden ser
resueltas más fácilmente. Estas nuevas variables escalares desconocidas, una para cada
restricción, son llamadas multiplicadores de Lagrange. El método dice que los puntos
donde la función tiene un extremo condicionado con k restricciones, están entre
los puntos estacionarios de una nueva función sin restricciones construida como
una combinación lineal de la función y las funciones implicadas en las restricciones,
cuyos coeficientes son los multiplicadores.

2. DEFINICIÓN.- Supongamos que se maximiza o minimiza, una
función de dos variables &#3627408487;=&#3627408467;(&#3627408485;,&#3627408486;) en donde las variables están sujetas a la
restricción &#3627408468;(&#3627408485;,&#3627408486;)=0 .
Luego se construye una función introduciendo una incógnita A llamada el multiplicador
de
Lagrange. ??????(&#3627408485;,&#3627408486;,&#3627409158;)=&#3627408467;(&#3627408485;,&#3627408486;)+&#3627409158; &#3627408468;(&#3627408485;,&#3627408486;) …(1)

MÁXIMOS Y MÍNIMOS

19

Ahora determinaremos los puntos críticos o estacionarios de F, es decir:

{




∂F(x,y,λ)
∂x
=
∂f(x,y)
∂x

∂g(x,y)
∂x
=0
∂F(x,y,λ)
∂y
=
∂f(x,y)
∂y

∂g(x,y)
∂y
=0
∂F(x,y,λ)
∂λ
=g(x,y)=0
…(2)
Al resolver el sistema (2) se obtienen los puntos críticos o estacionarios, luego se evalúa
la función f en cada uno de los puntos críticos, el mayor valor de f es el máximo de f
sujeto a la restricción y el menor valor de f es el mínimo de f sujeto a la restricción.

EJEMPLO.- Maximizar la función &#3627408467;(&#3627408485;,&#3627408486;)=&#3627408466;
&#3627408485;&#3627408486;
sometida a la restricción &#3627408485;
2
+&#3627408486;
2

8=0
SOLUCIÓN
Calculando los puntos críticos, para esto definimos la función F introduciendo la
incógnita &#3627409158; ??????(&#3627408485;,&#3627408486;,&#3627409158;)=&#3627408467;(&#3627408485;,&#3627408486;)+&#3627409158;(&#3627408485;
2
+&#3627408486;
2
−8) de donde ??????(&#3627408485;,&#3627408486;,&#3627409158;)=&#3627408466;
&#3627408485;&#3627408486;
+&#3627409158;(&#3627408485;
2
+
&#3627408486;
2
−8)
{








????????????
??????&#3627408485;
=&#3627408486;&#3627408466;
&#3627408485;&#3627408486;
+2&#3627409158;&#3627408485;=0
????????????
??????&#3627408486;
=&#3627408485;&#3627408466;
&#3627408485;&#3627408486;
+2&#3627409158;&#3627408486;=0 ⟹
&#3627409158;=−
&#3627408486;&#3627408466;
&#3627408485;&#3627408486;
2&#3627408485;

&#3627409158;=−
&#3627408485;&#3627408466;
&#3627408485;&#3627408486;
2&#3627408486;

&#3627408485;
2
+&#3627408486;
2
=8

????????????
??????&#3627409158;
=&#3627408485;
2
+&#3627408486;
2
−8=0


&#3627408486;&#3627408466;
&#3627408485;&#3627408486;
2&#3627408485;
=
&#3627408485;&#3627408466;
&#3627408485;&#3627408486;
2&#3627408486;
⟹&#3627408485;
2
=&#3627408486;
2
, de donde 2&#3627408485;
2
=8 ⇒&#3627408485;
2
=4⇒&#3627408485;±,&#3627408486;=±2
Luego los puntos críticos son &#3627408477;
1
(±2,±2),&#3627408477;(+2,±2) y como &#3627408467;(&#3627408485;,&#3627408486;)=&#3627408466;
&#3627408485;&#3627408486;

&#3627408467;(±2,±2)=&#3627408466;
4
&#3627408467;(+2,±2)=&#3627408466;
−4

Luego el valor máximo es &#3627408467;(±2,±2)=&#3627408466;
4





OBSERVACIÓN.- En algunos casos las ecuaciones de las restricciones pueden
reemplazarse en la Función que se va maximizar o minimizar así el problema se reduce a los
máximos y mínimo sin restricciones. Sin embargo este procedimiento no siempre es
factible, especialmente si la función que se va a maximizar o minimizar tiene más de dos
variables y varias restricciones.

MÁXIMOS Y MÍNIMOS

20

Entonces para estos casos se aplica el método de los multiplicadores de Lagrange del
modo siguiente: Sea &#3627408467;:??????⊂&#3627408453;
&#3627408475;
→&#3627408453; una función definida en el conjunto abierto &#3627408467; tal
que existe derivadas parciales de &#3627408467; hasta el segundo orden inclusive, para obtener los
extremos condicionados de &#3627408487;=&#3627408467;(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
) sujeta a las condiciones de enlace:
??????
1
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0
??????
2
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0
.
.
.
??????
&#3627408475;
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0 ,&#3627408474;<&#3627408475;


Se procede del siguiente modo
Construimos la función de Lagrange
??????(&#3627408485;
1,&#3627408485;
2,…,&#3627408485;
&#3627408475;,&#3627409158;
1,….,&#3627409158;
&#3627408474;
)=&#3627408467;(&#3627408485;
1,&#3627408485;
2,…,&#3627408485;
&#3627408475;
)+&#3627409158;
1??????
1
(&#3627408485;
1,&#3627408485;
2,…,&#3627408485;
&#3627408475;
)+...+&#3627409158;
&#3627408474;??????
&#3627408474;(&#3627408485;
1,&#3627408485;
2,…,&#3627408485;
&#3627408475;)
Donde &#3627409158;
1
,&#3627409158;
2
,…,&#3627409158;
&#3627408474;
se llaman multiplicadores de Lagrange.
Los extremos incondicionados de F (condicionados de f) se obtiene a partir de las
ecuaciones siguientes:
{


















????????????
??????&#3627408485;
1
=0
????????????
??????&#3627408485;
2
=0
.
.
.
????????????
??????&#3627408485;
&#3627408475;
=0
????????????
??????&#3627409158;
1
=0
????????????
??????&#3627409158;
2
=0
.
.
.
????????????
??????&#3627409158;
&#3627408474;
=0

Sea P0 uno de estos puntos

MÁXIMOS Y MÍNIMOS

21

Se construye la forma cuadrática: &#3627408437;(&#3627408465;&#3627408485;
1
,&#3627408465;&#3627408485;
2
,…,&#3627408465;&#3627408485;
&#3627408475;−&#3627408474;
)=∑ ∑ &#3627408463;
&#3627408472;&#3627408473;
&#3627408465;&#3627408485;
&#3627408472;
&#3627408465;&#3627408485;
&#3627408473;
&#3627408475;−&#3627408474;
&#3627408473;=1
&#3627408475;−&#3627408474;
&#3627408472;=1

lo cual obtiene a partir de: &#3627408436;(&#3627408465;&#3627408485;
1
,&#3627408465;&#3627408485;
2
,…,&#3627408465;&#3627408485;
&#3627408475;
)=&#3627408465;
2
??????=∑∑&#3627408465;&#3627408485;
&#3627408470;
&#3627408465;&#3627408485;
&#3627408471;
&#3627408475;
&#3627408471;=1
&#3627408475;
&#3627408470;=1
y de las
diferenciales de las condiciones de enlace.

{






&#3627408465;??????
1
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0
&#3627408465;??????
2
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0
.
.
.
&#3627408465; ??????
&#3627408475;
(&#3627408485;
1
,&#3627408485;
2
,…,&#3627408485;
&#3627408475;
)=0


Asociar a B su matriz correspondiente y estudiar el comportamiento en cada punto
crítico.
EJEMPLO.- Hallar los extremos condicionados de f(x,y,z) = xyz, estando ligados las
variables &#3627408485;,&#3627408486;,&#3627408487; por las relaciones ??????
1
(&#3627408485;,&#3627408486;,&#3627408487;)=&#3627408485;+&#3627408486;−3,??????(&#3627408485;,&#3627408486;,&#3627408487;)=&#3627408485;−&#3627408486;−&#3627408487;−8
SOLUCIÓN
Definiendo la función de LaGrange
??????(&#3627408485;,&#3627408486;,&#3627408487;,&#3627409158;,??????)=&#3627408467;(&#3627408485;,&#3627408486;,&#3627408487;)+&#3627409158;??????
1
(&#3627408485;,&#3627408486;,&#3627408487;)+????????????
2
(&#3627408485;,&#3627408486;,&#3627408487;)
Calculando los puntos críticos
??????(&#3627408485;,&#3627408486;,&#3627408487;,&#3627409158;,??????)=&#3627408485;&#3627408486;&#3627408487;+&#3627409158;(&#3627408485;+&#3627408486;−&#3627408487;−3)+??????(&#3627408485;−&#3627408486;−&#3627408487;−8)
{










????????????
??????&#3627408485;
=&#3627408486;&#3627408487;+&#3627409158;+??????=0……(1)
????????????
??????&#3627408486;
=&#3627408485;&#3627408487;+&#3627409158;−??????=0……(2)
????????????
??????&#3627408487;
=&#3627408485;&#3627408486;−&#3627409158;−??????=0……(3)
????????????
??????&#3627409158;
=&#3627408485;+&#3627408486;−&#3627408487;−3=0…(4)
????????????
????????????
=&#3627408485;−&#3627408486;−&#3627408487;−8=0…(5)

de la ecuación (1) y (3) eliminamos.
&#3627408486;&#3627408487;+&#3627408485;&#3627408486;=0 ⇒ &#3627408486;(&#3627408485;+&#3627408487;)=0 ⇒ &#3627408486;=0 ?????? &#3627408485;+&#3627408487;=0
si &#3627408486;=0, no existe solución, luego suponemos para &#3627408486;≠9se tiene &#3627408487;=−&#3627408485; reemplazando
en la ecuación (4) y (5) se la tiene.
{
2&#3627408485;+&#3627408486;=3
2&#3627408485;−&#3627408486;=8
 &#3627408485;=
11
4
, &#3627408486;=−
5
2
, &#3627408487;=−
11
4

MÁXIMOS Y MÍNIMOS

22

Por lo tanto &#3627408451;(
11
4
,−
5
2
,−
11
4
) es un punto crítico.
Luego &#3627408436;(&#3627408465;&#3627408485;,&#3627408465;&#3627408486;,&#3627408465;&#3627408487;)=∑∑
??????
2
??????
??????&#3627408485;
&#3627408470;
??????&#3627408485;
&#3627408471;
(&#3627408485;
1
=&#3627408485;,&#3627408485;
1
=&#3627408486;,&#3627408485;
3
=&#3627408487;)
3
&#3627408471;=&#3627408470;
3
&#3627408470;=&#3627408471;

&#3627408465;??????
1
(&#3627408485;,&#3627408486;,&#3627408487;)=&#3627408465;&#3627408485;+&#3627408465;&#3627408486;−&#3627408465;&#3627408487;=0
 &#3627408465;&#3627408486;=0.&#3627408465;&#3627408485;=&#3627408465;&#3627408487; …. (1)
&#3627408465;??????
2
(&#3627408485;,&#3627408486;,&#3627408487;)=&#3627408465;&#3627408485;−&#3627408465;&#3627408486;−&#3627408465;&#3627408487;=0
Ahora reemplazando (1) en A (dx, dy, dz) se tiene
&#3627408436;(&#3627408465;&#3627408485;,&#3627408465;&#3627408486; ,&#3627408465;&#3627408487;)=
??????
2
??????
??????&#3627408485;
2
&#3627408465;&#3627408485; &#3627408465;&#3627408485;+
??????
2
??????
??????&#3627408485;??????&#3627408487;
&#3627408465;&#3627408485;&#3627408465;&#3627408487;+
??????
2
??????
??????&#3627408487;??????&#3627408485;
&#3627408465;&#3627408487;&#3627408465;&#3627408485;+
??????
2
??????
??????&#3627408487;
2
&#3627408465;&#3627408487;&#3627408465;&#3627408487;
=
??????
2
??????
??????&#3627408485;
2
&#3627408465;&#3627408485;&#3627408465;&#3627408485;+(
??????
2
??????
??????&#3627408485;??????&#3627408461;
+
??????
2
??????
??????&#3627408461;??????&#3627408485;
)&#3627408465;&#3627408485;&#3627408465;&#3627408485;+
??????
2
??????
??????&#3627408461;
2
&#3627408465;&#3627408485;&#3627408465;&#3627408485;=(
??????
2
??????
??????&#3627408485;
2
+2
??????
2
??????&#3627408485;??????&#3627408487;
+
??????
2
??????
??????&#3627408461;
2
)&#3627408465;&#3627408485;&#3627408465;&#3627408485;
=(0+2&#3627408486;+0)&#3627408465;&#3627408485; &#3627408465;&#3627408485;=2&#3627408486; &#3627408465;&#3627408485; &#3627408465;&#3627408485;=&#3627408437; (&#3627408465;&#3627408485;)
Por lo tanto B(dx) = 2y dx dx , entonces
&#3627408437;=(&#3627408465;&#3627408485;)(&#3627408477;)=−5 &#3627408465;&#3627408485; &#3627408465;&#3627408486;<0 . Luego &#3627408451;(
11
5
,−
5
2
;
11
4
) corresponde a un máximo
condicionado de f.
EJEMPLO.- Hallar los extremos relativos de la función &#3627408467;(&#3627408485;,&#3627408486;)=&#3627408485;
3
+&#3627408486;
3
+9&#3627408485;
2
3−3&#3627408486;
2
+
15&#3627408485;−9&#3627408486;
SOLUCIÓN
Calculando los puntos críticos de f(x,y)
{


??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=3&#3627408485;
2
+18&#3627408485;+15=0
??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
=3&#3627408486;
2
−6&#3627408486;−9=0

Resolviendo el sistema se tiene:
{
3(&#3627408485;+1)(&#3627408485;+5)=0
3(&#3627408486;+1)(&#3627408486;−3)=0
{
&#3627408485;=−1, &#3627408485;=−5
&#3627408486;=−1, &#3627408486;=3

Los puntos críticos son: &#3627408451;
1
(−1,−1),&#3627408451;
2
(−1,3),&#3627408451;
3
(−5,−1),&#3627408451;
4
(−5,3).
Calculando la segunda derivada
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
2
=6&#3627408485;+18 .
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
2
=6&#3627408486;−6.
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;??????&#3627408485;
=0

MÁXIMOS Y MÍNIMOS

23

Aplicando el criterio de la segunda derivada ∆=
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
2
.
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
2
−(
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;??????&#3627408485;
)2
Para &#3627408451;
1
(−1,−1) . ∆=(12).(−12). 0= .144 < 0
Luego se tiene en &#3627408451;
1
(−1,−1) un punto silla para &#3627408451;
2
(−1,3) ∆=(12).(12).0=144>0
Y como
??????
2
&#3627408467;(−1,3)
??????&#3627408485;
2
=−12>0 entonces se tiene un minimo &#3627408451;
2
(−1,3) cuyo valor
minimo es &#3627408467;(−1,3)=−34
Para &#3627408451;
3
(−5,−1), ∆=(−12).(−12)−0=144>0 y como
??????
2
&#3627408467;(−5,−1)
??????&#3627408485;
2
=−12<0,
entonces se tiene un máximo en &#3627408451;
3
(−5,−1) cuyo valor máximo es &#3627408467;(−5,−1)=30 , para
&#3627408451;
4
(−5,3) ∆=(−12).(12)−0=−144<0 entonces se tiene en el &#3627408451;
4
(−5,3) un punto
de silla.
EJEMPLO.- Hallar los extremos relativos de la función &#3627408487;=&#3627408467;(&#3627408485;,&#3627408486;)=&#3627408485;
3
+&#3627408486;
3

15&#3627408485;&#3627408486;
SOLUCIÓN
Calculando los puntos críticos de la función f
{


??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=3&#3627408485;
2
−15&#3627408486;=0 …(1)
??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
=3&#3627408486;
2
−15&#3627408485;=0 …(2)

De la ecuación (1) se tiene &#3627408486;=
&#3627408485;
2
5
, reemplazando en (2)
3(
&#3627408485;
4
25
)−15&#3627408485;=0  &#3627408485;(&#3627408485;
3
−125)=0 &#3627408485;=0,&#3627408485;=5
Para &#3627408485;=0,&#3627408486;=0,&#3627408451;
1
(0,0) punto crítico, &#3627408485;=5,&#3627408486;=5, &#3627408451;
2
(5,5) punto critico
Calculando las segundas derivadas
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
2
=6&#3627408485; ,
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;
2
=6&#3627408486; ,
??????
2
&#3627408467;(&#3627408485;.&#3627408486;)
??????&#3627408486;&#3627408465;&#3627408485;
=−15
Aplicando el criterio de la segunda derivada
∆=
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
2
.
??????
2
(&#3627408485;,&#3627408486;)
??????&#3627408486;
2
−(
??????
2
&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408486;??????&#3627408485;
)2

MÁXIMOS Y MÍNIMOS

24

Para &#3627408451;
1
(0.0) , ∆&#3627408451;
1(0,0)=(0)(0)−(−15)
2
=−225<0 , entonces &#3627408451;
1
(0.0) un punto
silla para &#3627408451;
2
(5,5), ∆P
2(5,5)=(30)(30)−225=650>0 y como
??????
2
&#3627408467;(5,5)
??????&#3627408485;
2
=30>0,
entonces ∃ minimo relativo en el punto &#3627408451;
2
(5,5) cuyo valor minimo es &#3627408467;(5.5)=−125
CONDICIONES DE KUHN – TUCKER
1. HISTORIA
Las condiciones de Karush-Kuhn-Tucker (también conocidas como las condiciones
KKT o Kuhn-Tucker) son condiciones necesarias y suficientes para que la solución de
un problema de programación matemática sea óptima. Se dice estas son una
generalización del método de los multiplicadores de Lagrange.
Condiciones de Kuhn-Tuvker fue desarrollado por Albert William Tucker y
complementada por Harold Kuhn, quien permitió mejoras en el proceso, pero se le
adjudico un papel secundario.
2. DEFINICIÓN.- Las condiciones de KUHN – TUCKER, establece que:
un punto (x, y) es un máximo local de f(a,b) cuando g(x,y) ≤ 0, solamente si existe un
valor no negativo de λ tal que λ y (x,y) satisface las condiciones de KUHN – TUCKER.
{


??????&#3627408467;(&#3627408485;,&#3627408486;)
??????&#3627408485;
−λ
??????&#3627408468;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=0
??????&#3627408468;(&#3627408485;,&#3627408486;)
??????&#3627408485;
− λ
??????&#3627408468;(&#3627408485;,&#3627408486;)
??????&#3627408485;
=0
λ g(x,y)=0 o

&#3627408468;(&#3627408485;,&#3627408486;)≤0

Estos últimos es suficiente si &#3627408467;(&#3627408485;,&#3627408486;)es cóncava hacia arriba y &#3627408468;(&#3627408485;,&#3627408486;)es cóncava arriba
, debido a que un punto máximo de &#3627408467;(&#3627408485;,&#3627408486;)es un punto mínimo de resultados también se
puede aplicar para minimizar una función cóncava según una restricción también
cóncava hacia arriba, para el caso en la que la restricción de la forma &#3627408468;(&#3627408485;,&#3627408486;)≥0
entonces &#3627408468;(&#3627408485;,&#3627408486;)debe ser cóncava hacia abajo.
EJEMPLO.- Obtener los máximos y mínimos de la función f(x,y)= 3x
2
+4y
2
-xy, sujeta
a la restricción 2x+ y=21
SOLUCIÓN
Sea F(x,y, λ) = f(x,y) – λ g(x,y),de donde resulta

MÁXIMOS Y MÍNIMOS

25

F(x,y, λ) = 3x
2
+4y
2
- xy - λ (2x+ y−21), calculando las derivadas
{




????????????
??????&#3627408485;
=6&#3627408485;−&#3627408486;−2 λ=0
????????????
??????&#3627408486;
=8&#3627408486;−&#3627408485;− λ=0
????????????
??????λ
=−(2&#3627408485;+&#3627408486;−2 1)=0
Entonces {
λ=
6&#3627408485;−&#3627408486;
2
λ=8&#3627408486;−&#3627408485;
entonces y=
8&#3627408485;
7

Como 2x + y – 21 = 0 entonces 2x +
8&#3627408485;
7
= 21 de donde {
x=8.5
y=4
entonces P(8.5, 4)
??????2??????
??????&#3627408485;2
=6 ,
??????2??????
????????????2
=8 ,
??????2??????
??????&#3627408485;????????????
=−1
∆*=
??????2??????
??????&#3627408485;2
.
??????2??????
??????&#3627408460;2
−(
??????2??????
??????&#3627408485;??????&#3627408460;
)2= (6) (8) – (-1)
2
= 47 > 0 y como
??????2??????
??????&#3627408485;2
= 6>0 y
??????2??????
??????&#3627408460;2
=8>0
Entonces (8.5, 4) es un mínimo restringido de f(x,y).
EJEMPLO.- El costo de producción C, es una función de las cantidades producidas x
e y de dos tipos de artículos, está dado por C=6x
2
+ 3y
2
para minimizar tal costo ¿Qué
cantidad de cada uno de los dos artículos debe producirse si: x + y ≥18?
SOLUCIÓN
Aplicando KUHN – TUCKER, con g(x,y) = x + y – 18≥0
{





??????
??????&#3627408485;
(6x2 + 3y2)−λ
??????
??????&#3627408485;
(x + y – 18)=0
??????
??????&#3627408486;
(6x2 + 3y2)−λ
??????
??????&#3627408486;
(x + y – 18)=0 ,&#3627408464;&#3627408476;&#3627408475;&#3627408465;&#3627408470;&#3627408464;&#3627408470;&#3627408476;&#3627408475; &#3627408465;&#3627408466; KUHN – TUCKER
λ(x + y – 18)=0
x + y – 18≤0


{
12&#3627408485;−λ=0
6&#3627408486;−λ=0
λ( x + y – 18)=0
Entonces {
λ=12x
λ=6y
λ=0 ⌄ x + y – 18=0


I λ=0 entonces x=y=0 donde el punto P(0,0) no satisface la condición de KUHN
– TUCKER, 0 + 0 – 18 ≠0 por lo tanto el punto P (0,0) no es óptimo.

x + y – 18=0 Entonces x + 2x – 18=0
Entonces x= 6 , y= 12

MÁXIMOS Y MÍNIMOS

26

Como el punto P(6,12) satisface la condición KUHN – TUCKER 6 +12 – 18 = 0 ≥0
entonces el punto P(6,12) es óptimo .
Como f(x,y)=6x
2
+ 3y
2
es cóncava hacia arriba, luego el punto P(6,12) se tiene un
mínimo en la producción que se encuentra bajo la retención X +Y – 18 ≥0.






La condición de Kuhn-Tucker se desarrolló
principalmente para trabajar en la solución de
problemas de programación lineal, mientras que la
de LaGrange se adapta a una mayor cantidad de
casos, incluyendo casos rutinarios o de
cotidianidad.

MÁXIMOS Y MÍNIMOS

27

CONCEPTOS CLAVE

1. VALORES EXTREMOS DE UNA FUNCIÓN
Se llama valores extremos de una función a sus máximos y mínimos.

2. PUNTO CRÍTICO
a) Un punto crítico se caracteriza, geométricamente, porque la gráfica de la
función en ese punto está momentáneamente horizontal, es constante.
b) Un punto crítico x1, se caracteriza, algebraicamente, porque la primera derivada
de la función vale cero cuando se evalúa en él: f(x1) = 0.
c) Una función f(x) tiene puntos críticos en los valores x del dominio que hacen que
la primera derivada valga cero.

3. VALOR MÁXIMO
Geométricamente, un valor máximo es el más alto en una curva. Se llama
máximo local si es el punto más alto sólo de una región. Si lo es en todo el dominio, se
llama máximo absoluto.

4. VALOR MÍNIMO
Geométricamente, un valor mínimo es el más bajoen una curva. Se llama
mínimo local si es el punto más bajo sólo de una región. Si lo es en todo el dominio, se
llama mínimo absoluto.

5. En la región en que f(x) tiene un máximo, cambia de ser creciente a decreciente,
cuando recorremos el eje X de izquierda a derecha.
6. En la región en que f(x) tiene un mínimo, cambia de ser decreciente a creciente,
cuando recorremos el eje X de izquierda a derecha.
7. Geométricamente, un punto de inflexión se localiza donde la gráfica de la
función cambia de ser cóncava hacia abajo a cóncava hacia arriba o viceversa, si existe
la tangente en ese punto.
8. En la región en que f(x) tiene un punto de inflexión, no cambia su carácter
creciente o decreciente, cuando recorremos el eje X de izquierda a derecha.

MÁXIMOS Y MÍNIMOS

28



REFERENCIAS BIBLIOGRÁFICAS
Alfonzo A. (07 de diciembre de 2013) Condiciones de Kuhn Tucker y LaGrange
97 Recuperado el 28 de junio de 2015, de
http://es.slideshare.net/andreaalfonzosanchez/condiciones-de-kuhn-tucker-y-lagrange-
97
Espinoza E. (2000) Análisis Matemático III Para Estudiantes De Ciencias e
Ingeniería (3° edición), Perú Editorial Servivios Gráficos J.J
Mary A. (01 de junio de 2013) Discriminante o hessiano Recuperado el 28 de
junio de 2015, de http://es.slideshare.net/maryanabella/discriminante-ohessiano

MÁXIMOS Y MÍNIMOS

29





ANEXOS
Tags