Methods for Quantifying Magnetic Field Topology

iomsn 29 views 34 slides Jul 23, 2024
Slide 1
Slide 1 of 34
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34

About This Presentation

For the dynamics of a magnetised plasma, the magnetic field line
topology is an important factor. Tangled, linked or knotted fields are not easily broken apart without any violent reconnection events, while topologically trivial fields freely and quickly relax to a force-free state. Magnetic helicit...


Slide Content

Methods for Quantifying
Magnetic Field Topology
Simon Candelaresi

Solar Magnetic Field
(Trace) (Trace)
2
(Prior and MacTaggart 2016) (Yamasaki et al. 2021)

Coronal Magnetic Fields
NASA
(Thiffeault et al. 2006)
Field line tangling in solar magnetic fields.
3

Magnetic Helicity
Conservation of magnetic helicity:
magnetic resistivity
Realizability condition:
Magnetic energy is bound from
below by magnetic helicity.
4
link twist knot braid

AAA (trefoil knot) AABB (Borromean rings)
Magnetic Braid Configurations
5

Interlocked Flux Rings
Magnetic helicity rather then actual
linking determines the field decay.
6
(Del Sordo et al. 2010)

(Fabian et al. 2000)
galactic disc
Intergalactic Bubbles
hot, under-dense bubble
stratified medium
7
Bubbles’ age is several tens of
millions of years.
Bubbles rise buoyantly through
density difference.

Numerical Experiments
8
Full resistive magnetohydrodynamics simulations
with the Pencil Code.
stratified medium
hot, under-dense bubble

Initial Condition: Spheromak
9

Thermal Emission
10

Temperature Iso-Surfaces
11
hydro low helicity high helicity

Bubble Coherence
12
Helical magnetic fields can stabilise the bubbles.0.5 1.0 1.5 2.0 2.5 3.0 3.5
zmean
0.6
0.8
1.0
1.2
1.4
dmean
B=0
Hm≈H
0
m/2
Hm≈2H
0
m
Bex=0.8
Bex=0.2

Magnetic Fields with a Twist
Helical fields can be made non-
helical by twisting the field lines.
13
Non-helical fields can be made
helical by twisting the field lines.
Simulated twisted knots and links in
MHD (Pencil Code).
(Candelaresi & Beck 2023)

Knots and Links
14
trefoil
5-foil IUCAA (8_18)
4-foil
triple rings
Borromean rings

Triple Rings
150 25 50 75 100 125 150
t
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
hA·Bi
linked,h=0,tw=0
linked,h=0,tw=1
linked,h=2,tw=0
linked,h=2,tw=1
linked,h=2,tw=−1 10
−1
10
0
10
1
10
2
t
10
−3
10
−2
10
−1
10
0
hB
2
i/hB
2
0i
t
−1
linked,h=0,tw=0
linked,h=0,tw=1
linked,h=2,tw=0
linked,h=2,tw=1
linked,h=2,tw=−1 0 5 10 15 20 25
t
0:015
0:010
0:005
0:000
0:005
0:010
0:015
h
J

B
i
linked;h=0;tw=0
linked;h=0;tw=1
linked;h=2;tw=0
linked;h=2;tw=1
linked;h=2;tw=1
Helicity restricts decay.
Small helicity production in
twisted non-helical field.

Knots
160 5 10 15 20 25
t
0:000
0:005
0:010
0:015
0:020
0:025
0:030
h
J

B
i
n=3;tw=0
n=3;tw=1
n=3;tw=2 0 25 50 75 100 125 150
t
0:0002
0:0001
0:0000
0:0001
0:0002
h
A

B
i
n=3;tw=0
n=3;tw=1
n=3;tw=2 10
1
10
0
10
1
10
2
t
10
2
10
1
10
0
h
B
2
i
=
h
B
20
i
t
1
n=3;tw=0
n=3;tw=1
n=3;tw=2
Significant helicity production.
Initial helicity is not a good
predictor on dynamics.

Low Resistivity Twisted Trefoil Knot0 5 10 15 20 25
t
0:000
0:005
0:010
0:015
0:020
0:025
0:030
h
J

B
i
tw=2;==1e3
tw=2;==5e4 0 25 50 75 100 125 150
t
0:0001
0:0000
0:0001
0:0002
h
A

B
i
tw=2;==1e3
tw=2;==5e4 10
1
10
0
10
1
10
2
t
10
2
10
1
10
0
h
B
2
i
=
h
B
20
i
t
1
tw=2;==1e3
tw=2;==5e4
Stronger alignment of J and B.
Lower resistivity partially
compensated by stronger
alignment.

Magnetic Braid
(Wilmot-Smith 2010)
Periodic braid topologically
equivalent to Borromean rings.
Separation into two twisted field
regions.
Conserved invariants like fixed
point index and field line helicity.
18
(Yeates et al. 2011)

Fixed Point Index
mapping:
(Yeates et al. 2011)
Trace magnetic field lines from to .
Color coding:
Compare with :
red
yellow
green
blue
fixed points:
19

Stability criteria
Woltjer (1958):
Taylor (1974):
constraint equilibrium
constant along field line
= total volume = volume along magnetic field line
Taylor state not reached due to
fixed point conservation.
20
(Yeates et al. 2011)

Quadratic Helicities
22
number of mutual linking
magnetic flux
volume of the flux tube
These are not invariant under general diffeomorphisms.
Only under volume preserving ones.

Quadratic Helicities
23
Invariant under homogeneously density changing diffeomorphisms.
(Akhmet’ev et al. 2017)

Field Line Helicity
24 -05=201=2yxy1=25=2
x
-
05=2
01=2
yxy
1=2
5=2

y
t=0 t=5 t=25 t=125




yxy
2=1
2=5


A
In ideal conditions field line helicity is only being transported.

Beyond Magnetic Helicity
25
(Dabrowski-Tumanski et al. (2020))
Describe knots, braids and links using knot polynomials:
Jones polynomials for the trefoil knot:
closure
Use Python package Topoly to
find polynomials.
(Yeates 2011)

Knots and Links as Braids
26
Periodic boundaries.

Knots and Links as Braids
4-foil knot
need braid representation of knots and links
27

MHD Simulations
28
● initial condition: braids
● isothermal compressible gas
● viscous medium
● periodic in z
Pencil Code

Link Spectrum
29
Pick a few random field lines and determine the link type.
Time dependent spectrum of links.
Repeat ca. 320,000 times for each snapshot.

Trefoil Knot
30
generally simple
generally complex

Borromean Rings
31

Helical 3 Rings
32

Non-Helical 3 Rings
33

Vortex Reconnection
34
Field lines untangle into two twisted vortex tubes.

Conclusions
[email protected]
● Magnetic helicity restricts the field’s dynamics.
● Twist can induce a significant helicity production.
● Quadratic helicities are ideal invariants, but require field line
tracing.
● Field line helicity ideal for fields with dominant field direction.
● Knot invariants to compute spectra of braids.
[email protected]