Microbial respiration

28,322 views 52 slides Mar 10, 2015
Slide 1
Slide 1 of 52
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52

About This Presentation

M. Sc., Microbiology Study Material (Semester-I, General Microbiology)
Department of Microbiology, School of Bioscience,
Periyar University, Salem.


Slide Content

MICROBIAL RESPIRATION
Dr. R. BALAGURUNATHAN
Professor & Head
Dept. of Microbiology
Periyar University
Periyar PalkalaiNagar
Salem –636 011.

Microbial Metabolism
A.Basic Concepts of Metabolism
B.GlycolyticPathways
C.Fermentation
D.Respiration
E.Photosynthesis
F.Chemolithotrophy

Basic Concepts
•Definitions
–Metabolism:Theprocessesofcatabolism
andanabolism
–Catabolism:Theprocessesbywhicha
livingorganismobtainsitsenergyand
rawmaterialsfromnutrients
–Anabolism:Theprocessesbywhich
energyandrawmaterialsareusedto
buildmacromolecules andcellular
structures(biosynthesis)

Basic Concepts
ReductionandOxidation
–Anatombecomesmorereduced
whenitundergoesachemical
reactioninwhichit
•Gainselectrons
•Bybondingtoalesselectronegative
atom
•Andoftenthisoccurswhentheatom
becomesbondedtoahydrogen

Basic Concepts
ReductionandOxidation
-Anatombecomesmoreoxidized
whenitundergoesachemical
reactioninwhichit
•Loseselectrons
•Bybondingtoamoreelectronegative
atom
•Andoftenthisoccurswhentheatom
becomesbondedtoanoxygen

Basic Concepts
ReductionandOxidation
Inmetabolicpathways,weareoftenconcerned
withtheoxidationorreductionofcarbon.
Reducedformsofcarbon(e.g.hydrocarbons,
methane,fats,carbohydrates,alcohols)carrya
greatdealofpotentialchemicalenergystoredin
theirbonds.
Oxidizedformsofcarbon(e.g.ketones,
aldehydes,carboxylicacids,carbondioxide)carry
verylittlepotentialchemicalenergyintheir
bonds.

Basic Concepts
ReductionandOxidation
Reductionandoxidationalwaysoccur
together.Inareduction-oxidationreaction
(redoxreaction),onesubstancegetsreduced,
andanothersubstancegetsoxidized.The
thingthatgetsoxidizediscalledtheelectron
donor,andthethingthatgetsreducedis
calledtheelectronacceptor.

Basic Concepts
EnzymaticPathwaysforMetabolism
–Metabolicreactionstakeplaceinastep-wise
fashioninwhichtheatomsoftherawmaterials
arerearranged,oftenoneatatime,untilthe
formationofthefinalproducttakesplace.
–Eachsteprequiresitsownenzyme.
–Thesequenceofenzymatically-catalyzedstepsfrom
astartingrawmaterialtofinalendproductsis
calledanenzymaticpathway(ormetabolic
pathway)

Basic Concepts
CofactorsforRedoxReactions
–Enzymesthatcatalyzeredoxreactionstypically
requireacofactorto“shuttle”electronsfromone
partofthemetabolicpathwaytoanotherpart.
–Therearetwomainredoxcofactors:NADand
FAD.Theseare(relatively)smallorganicmolecules
inwhichpartofthestructurecaneitherbe
reduced(e.g.,acceptapairofelectrons)or
oxidized(e.g.,donateapairofelectrons).

Basic Concepts
Cofactors for RedoxReactions
NAD
(oxidized)+H
+
+PairofelectronsNADH
(reduced)
FAD
(oxidized)+H
+
+PairofelectronsFADH
(reduced)
NADandFADarepresentonlyinsmall(catalytic)
amounts–theycannotserveasthefinalelectron
acceptor,butmustberegenerated(reoxidized)in
orderformetabolismtocontinue.

Basic Concepts
ATP:A“currencyofenergy”formanycellularreactions
–ATPstandsforadenosinetriphosphate.Itisa
nucleotidewiththreephosphategroupslinkedina
smallchain.
–Thelastphosphateinthechaincanberemovedby
hydrolysis(theATPbecomesADP,oradenosine
diphosphate).
Thisreactionisenergeticallyfavorable:ithasaDG°'of
about–7.5kcal/mol
ATP+H
2O®ADP+Phosphate+Energy(7.5kcal/mol)

Respiration
•Featuresofrespiratorypathways
–PyruvicacidisoxidizedcompletelytoCO
2.
–Thefinalelectronacceptorisusuallyaninorganic
substance.
–NADHisoxidizedtoformNAD:Essentialfor
continuedoperationoftheglycolyticpathways.
–O
2mayormaynotberequired.
•Aerobicrespiration:O
2isthefinale
-
acceptor.
•Anaerobicrespiration:Ansubstance,usually
inorganic,otherthanO
2istheacceptor(egnitrate,
nitrite,sulfate)
–AlotofadditionalATParemade(upto36per
glucosemolecule).

Respiration
Stages of Respiration
–Preliminary reactions and the Krebs cycle
(TCA or Citric Acid Cycle)
–Respiratory electron transport

Respiration in Bacteria

Metabolism –An overview

GlycolyticPathways
•Featuresofglycolyticpathways
–Partialoxidationofglucosetoform
pyruvicacid
–AsmallamountofATPismade
–AsmallamountofNADisreducedto
NADH

GlycolyticPathways
Major glycolyticpathways found in different
bacteria:
–Embden-Meyerhoff-Parnaspathway
•“Classic” glycolysis
•Found in almost all organisms
–Hexosemonophosphate pathway
•Also found in most organisms
•Responsible for synthesis of pentose sugars used in
nucleotide synthesis
–Entner-Doudoroffpathway
•Found in Pseudomonasand related genera
–Phosphoketolasepathway
•Found in Bifidobacteriumand Leuconostoc

Overview of Cell Metabolism

–After Sugars are made or obtained, they
are the major energy source of life.
–Breakdown of sugar (catabolism) different
ways:
•Aerobic respiration
•Anaerobic respiration
•Fermentation
Energy Generating Patterns

Aerobic respiration
–Most efficient way to extract energy from
glucose.
–Process: Glycolysis
KrebCycle
Electron transport chain
–Glycolysis: Several glycolyticpathways
–The most common one:
glucose-----> pyruvicacid + 2 NADH + 2ATP

General Outline of Aerobic Respiration
Glycolysis
Krebs Cycle
Electron Transport System
Transition Reaction

General Outline
Glucose
PyruvicAcid
Glycolysis
Oxygen
Aerobic
No Oxygen
Anaerobic
Transition Reaction
Krebs Cycle
ETS
36 ATP
Fermentation

Glycolysis Steps –A fuel
molecule is energized,
using ATP.
1 3
1
Glucose
Step
2
3
4
Glucose-6-phosphate
Fructose-6-phosphate
Glyceraldehyde-3-phosphate
(G3P)
Step A six-carbon
intermediate splits into
two three-carbon
intermediates.
4
Step A redox
reaction generates
NADH.
5
5
1,3-Diphosphoglyceric acid
(2 molecules)
6
Steps –ATP
and pyruvic acid
are produced.
69 3-Phosphoglyceric acid
(2 molecules)
7
2-Phosphoglyceric acid
(2 molecules)
8
2-Phosphoglyceric acid
(2 molecules)
9
(2 molecules
per glucose molecule)
Pyruvic acid
Fructose-1,6-diphosphate
Energy In: 2 ATP
Energy Out: 4 ATP
NET 2 ATP

How GlycolysisWorks
Please note that due to differing operating
systems, some animations will not appear
until the presentation is viewed in
Presentation Mode (Slide Show view). You
may see blank slides in the “Normal” or “Slide
Sorter” views. All animations will appear
after viewing in Presentation Mode and
playing each animation. Most animations will
require the latest version of the Flash Player,
which is available at
http://get.adobe.com/flashplayer.

Krebs Cycle

Electron Transport Chain
•Groups of redoxproteins
–On inner mitochondrial membrane
–Binding sites for NADH and FADH
2
•On matrix side of membrane
•Electrons transferred to redoxproteins
•NADH reoxidizedto NAD
+
•FADH
2reoxidizedto FAD

ETC

Generation of a proton-motive force(1)

Generation of a proton-motive force(2)

Mechanism of ATPase

Electron Transport System and ATP Synthesis
Please note that due to differing operating
systems, some animations will not appear
until the presentation is viewed in
Presentation Mode (Slide Show view). You
may see blank slides in the “Normal” or “Slide
Sorter” views. All animations will appear
after viewing in Presentation Mode and
playing each animation. Most animations will
require the latest version of the Flash Player,
which is available at
http://get.adobe.com/flashplayer.

Anaerobic respiration
–Finalelectronacceptor:neverbeO2
Sulfatereducer:finalelectronacceptoris
sodiumsulfate(Na
2SO
4)
Methanereducer:finalelectronacceptoris
CO
2
Nitratereducer:finalelectronacceptoris
sodiumnitrate(NaNO
3)
O
2/H
2Ocouplingisthemostoxidizing,more
energyinaerobicrespiration.
Therefore,anaerobicislessenergyefficient.

Fermentation (F)
Glycosis:
Glucose ----->2 Pyruvate(P.A)+ 2ATP + 2NADH
Fermentation pathways
a. Homolacticacid F.
P.A -----> Lactic Acid
eg. Streptococci, Lactobacilli
b. Alcoholic F.
P.A -----> Ethyl alcohol
eg. yeast

Fermentation –An overview

Alcoholic fermentation

c. Mixed acid fermentation
P.A -----> lactic acid
acetic acid
H2 + CO2
succinicacid
ethyl alcohol
eg. E.coliand some Enterobacter
d. Butylene-glycol F.
P.A -----> 2,3, butyleneglycol
eg. Pseudomonas
e. Propionicacid F.
P.A -----> 2 propionicacid
eg. Propionibacterium

37
Metabolic strategies
Pathways
involved
Final e-
acceptor
ATP
yield
Aerobic
respiration
Glycolysis,
TCA, ET
O
2 38
Anaerobic
respiration
Glycolysis,
TCA, ET
NO
3
-
, SO
4
-2
,
CO
3
-3
variable
Fermentat
ion
Glycolysis Organic
molecules
2

Energy/carbon classes of organisms

Comparison of reaction centers of
anoxyphototrophs

Photosynthesis
•OverviewofPhotosynthesis
–Light-dependentReactions:
•Lightenergyisharvestedbyphotosyntheticpigmentsand
transferredtospecialreactioncenter(photosystem)
chlorophyllmolecules.
•Thelightenergyisusedtostripelectronsfroman
electrondonor(theelectrondonorgoesfromareducedto
anoxidizedstate).
•Theelectronsareshuttledthroughaseriesofelectron
carriersfromhighenergystatetoalowenergystate.
•Duringthisprocess,ATPisformed.
•Inthecyclicpathwayofelectrontransport,electronsare
returnedtotheelectrontransportchain
•Inthenoncyclicpathway,theelectronsareusedto
reduceNAD(orNADP)toNADH(orNADPH)

Photosynthesis
Light-independentReactions:
•ATPandNADH(NADPH)fromthelight-
dependentreactionsareusedtoreduce
CO
2toform organiccarbon
compounds(carbonfixation).
•Thereducedorganiccarbonisusually
convertedintoglucoseorother
carbohydrates.

Photosynthesis
Oxygenic photosynthesis
–Found in cyanobacteria (blue-green algae)
and eukaryotic chloroplasts
–Electron donor is H
2O: Oxidized to form O
2
–Two photosystems: PSII and PSI
–Major function is to produce NADPH and
ATP for the carbon fixation pathways

Oxygenic photosynthesis

Photosynthesis
Anoxygenicphotosynthesis
–Found in:
•Green sulfur bacteria (e.g. Chlorobium)
•Green nonsulfurbacteria (e.g. Chloroflexus)
•Purple sulfur bacteria (e.g. Chromatium)
•Purple nonsulfurbacteria (e.g. Rhodobacter)

Photosynthesis
Anoxygenicphotosynthesis (cont.)
b)Electron donors vary:
•H
2S or S
oin the green and purple sulfur bacteria
•H
2or organic compounds in the green and purple
nonsulfurbacteria
c)Only one photosystem
•In green bacteria, the photosystemis similar to PSI
•In purple bacteria, the photosystemis similar to PSII
d)Primary function is ATP production, chiefly via cyclic
photophosphorylation

Photosynthetic bacteria
(1) Chlorobium-green sulfur bacteria
Use green pigment chlorophyll
Use H
2S (hydrogen sulfide), S (sulfur), Na
2S
2O
3
(sodium thiosulfate) and H
2 as e-donors.
(2) Chromatium-purple sulfur bacteria
Use purple carotenoidpigment, same e-donors
(3) Rhodospirillum-non sulfur purple bacteria
Use H
2and other organic compounds such as
isopropanoletc, as e-donors.
Reaction: CO
2 + 2H
2A-----> CH
20 + H
20 +2A
•Ais not O

Chemolithotrophy
•FeaturesofChemolithotrophy
–Electronsareremovedfromareduced
inorganicelectrondonor
–Theelectronsarepassedthroughamembrane-
boundelectrontransportpathway,often
coupledtothesynthesisofATPandNADH
–Theelectronsareultimatelypassedtoafinal
electronacceptor
–ATPandNADHmaybeusedtoconvertCO
2to
carbohydrate

Chemolithotrophy
Examples of electron donors
–Ammonia (NH
4
+
) Nitrite (NO
2
-
)
in Nitrosomonas
–Nitrite (NO
2
-
) Nitrate (NO
3
2-
)
in Nitrobacter
–Hydrogen sulfide (H
2S) Sulfur (S
o)
in Thiobacillusand Beggiatoa
–Sulfur (S
o) Sulfate (SO
4
2-
)
in Thiobacillus
–Hydrogen (H
2) Water (H
2O)
in Alcaligenes

Chemolithotrophy
Examples of electron acceptors
–Oxygen(O
2) Water (H
2O)
in many organisms
–Carbon dioxide(CO
2) Methane (CH
4)
in the methanogenicbacteria

Chlorophyll a and bacteriochlophylla

Chemoautotroph
–SomebacteriauseO
2intheairtooxidize
inorganiccompoundsandproduceATP
(energy).Theenergyisenoughtoconvert
CO
2intoorganicmaterialneededforcell
growth.
–Examples:
Thiobacillus(sulfurS)
Nitrosomonas(ammonia)
Nitrobacter(nitrite)
–Variousgenera(hydrogenetc.)
Tags