Mobile Communication introduction lecture.pdf

DrAhmedAbdElhaleem2 14 views 39 slides Aug 28, 2024
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

cellular Communication


Slide Content

Dr. Ahmed M. AbdEl-Haleem
Mobile Communication
Fall 2022/23
Cellular Communication
Introduction
Faculty of
Engineering

Dr. Ahmed M. Abd El-Haleem
Associate Professor in
Communication and Electronic Department
Faculty of Engineering, Helwan University
E-mail: [email protected]
2

Course Assessment Plan
3
Mid-Term Grade
Research project 10%
Written Exam 20%
Assignments 10%
Final Written Exam 60%

Wireless Communication System
4
Passband
Transmitter Channel Receiver
Wireless
Transmission
media
Source information
Input sensor Output sensor
Destination information
Passband
Passband
Baseband
Message
Baseband
Message
▪Path loss and shadowing
▪Self interference
oMultipath [Rayleigh] fading
oDelay Spread: Intersymbol
interference (ISI)
oDoppler Shift [due to motion]
▪Noise (SNR)
▪Other users
oCo-channel interference (CCI)
oAdjacent-channel interference (ACI)

Signal-to-Noise Ratio and Shannon Capacity
5





+=
N
S
BC 1log
2
▪Signal-to-NoiseRatio(SNR)
oS/N=SNR= signal power(Watt)/noise power(Watt)
oS/N(dB)=SNR(dB)= 10 log
10(S/N power ratio)
oSNR relate to the performance of communication systems
oBit Error Rate (BER)
oShannon Capacity (System Capacity in bits/s)

Signal-to-Noise Ratio and Shannon Capacity
6
▪Signal-to-InterferenceRatio(SIR)
oSometimesknownasC/I(carrier-to-interferenceratio)
oInterference: signals from other simultaneous
communications
oS/I=SIR= signal power(Watt)/Interference power(Watt)
▪Signal-to-Interference-plus-Noise-Ratio(SINR)
oSINR= signal power(Watt)/(Interference power(Watt) +
noise power(Watt))
▪ShannonCapacityforWirelessCommunicationChannel
oTheoretical (upper) bound of communication channel
capacity
oConsider a bandlimited Gaussian channel operating in
the presence of additive Gaussian noise.

Signal-to-Noise Ratio and Shannon Capacity
7
oTheShannon-Hartleytheoremstatesthatthe
channelcapacityisgivenby
C = B log2(1 + SNR)
oC is the capacity in bits per second (bits/s).
oB is the bandwidth of the channel in Hz.
oSNR is the signal-to-noise ratio.

Signal-to-Noise Ratio and Shannon Capacity
8
▪How to evaluate the performance of a communication
scheme?
oHow close to Shannon bound?
oSpectral efficiency (bits/s/Hz)

Transmission modes in wireless Com. Systems
9
1) Simplex RF Communication Systems
Aradiotechnologythatallowsonlyone-waycommunicationfroma
transmittertoareceiver.
Examples:FMradio,Pagers,TV,AdaptiveMulti-Rate(AMR)systems.

10
2) Half-duplex RF Communication Systems
Two-waycommunicationbutnotsimultaneous(Push-to-talk)Time
DivisionDuplex(TDD).
Useanydesiredfrequencychannelfortransmitterandreceiver.
Sendtransmitandreceivesignalsatdifferenttimes.
Examples:Walkie-talkie.
Transmission modes in wireless Com. Systems

11
3 Full-duplex Communication Systems
Two-waycommunicationSimultaneous.
Separatefrequencychannelsintotransmitandreceive
bandsAllowssimultaneoustransmissionandreception.
Examples:Cellularphones,satellitecommunication.
Transmission modes in wireless Com. Systems

12
3 Full-duplex wireless Communication Systems
FrequencyDivisionDuplex(FDD)andTimeDivision
Duplex(TDD)isusedtoallowforsimultaneous
transmissionandreception
Transmission modes in wireless Com. Systems

Multiple Access Techniques
13
We Have a capacity as shown in Fig. so How
can we divide it between users.
Power as function of time and frequency.

Multiple Access Techniques (Cont’d)
14
1) Frequency Division Multiple Access (FDMA)
Eachusergetsafrequencyslotthathecanuseallthetime
withhighpower.
Thesefrequencybandsarenon-overlappingandaguardspaceis
usedbetweentheadjacentfrequencybands.
Thismultipleaccesstechniqueisveryhelpfuliftheusersare
communicatingwithinthesamegeographicalareaorspace.

Multiple Access Techniques (Cont’d)
15
1) Frequency Division Multiple Access (FDMA)
▪Advantages of FDMA
oItissimpletoimplement.Thereceiveronly
needstotunetotheparticularfrequencyto
receivethedata.
oManynetworkscanworkwithinthesamespace
andatthesametime.
oEachuserhasitsownsub-channel,soheorshe
canusethefullcapacityofthesub-channel.
oNointerferencefromtheadjacentfrequencies.

Multiple Access Techniques (Cont’d)
16
1) Frequency Division Multiple Access (FDMA)
▪DisadvantagesofFDMA
oCapacityintermsofchannelavailabilityislow.
Afterthechannelbeingallocatedtoauser,the
usercanusethechannelforalongtimeof
his/herwill.Incaseofhightrafficthenewusers
needtowaituntilthechannelisfree.
oDuetoguardbandbetweentheadjacent
frequencies,theoverallbandwidthutilizationis
poorbecausewearewastingsomefrequencies.I
meantheguardbandisnotallocatedtoanyuser.

Multiple Access Techniques (Cont’d)
17
2) Time Division Multiple Access (TDMA)
•Eachusergetsatimeslotwherehecanuseallthefrequencywith
highpower.
•Itsmeanmultipleusersareusingthesamefrequencybutin
differenttimeslots.
•Theguardspaceinatimedomainisalsoneededwhichisknownas
timegap.
•Iftwousersoverlapintimethisiscalledco-channelinterference.

Multiple Access Techniques (Cont’d)
18
2) Time Division Multiple Access (TDMA)
▪AdvantagesofTDMA
oOneAdvantageofTDMAoverFDMAisthatsingle
frequencycanbeusedbymanyusers.Soifmoreusers
arecoming,youcanincreasethetimeslotsandallocate
themthesamefrequency.Butrememberthereisalways
alimitednumberoftimeslotsareavailableinevery
application.
oDuetotimegap,nointerferencefromadjacent
transmissions.
oNofrequencyguardbandisneededsoyoucanuseallthe
frequencies.

Multiple Access Techniques (Cont’d)
19
2) Time Division Multiple Access (TDMA)
▪DisadvantagesofTDMA
oEveryuserneedsaprecisesynchronization,otherwisea
usercancreateco-channelinterference.Onthereceiver
sideausermustreceivethedataatexactlythesametime.
oBecausethechannelisavailableforsmallamountoftime,
thisreducestheoveralldatarate.

Multiple Access Techniques (Cont’d)
20
3) Code Division Multiple Access
A user gets all the time and uses all the frequency range but
uses only a part of the power (through the use of codes).
These codes are orthogonal to each other so the guard space is
achieved in code domain between the users using the same
channel simultaneously.

Multiple Access Techniques (Cont’d)
21
3) Code Division Multiple Access
▪AdvantagesofCDMA
oMoreflexibilityintermsofcodesascomparedto
frequenciesinFDMAsystem.
oOnlyonefrequencybandcanbeusedbymultipleusersall
thetime.
oCodesareorthogonaltoeachothersoInterferenceis
minimum.
▪DisadvantagesofCDMA
oReceiverneedstoknowthecodeandprecise
synchronizationisrequired.
oAsalltheusersarecommunicatingatthesamefrequency,a
nearusertransmittingathigherpowercandamage
informationforothernearbyusers

22
4) Space Division Multiple Access (SDMA)
In SDMA, different channels are separated by a large
enough distance so they can’t interfere with each other.
Multiple Access Techniques (Cont’d)

Evolution of Mobile Communication Systems
23

Evolution of Mobile Communication Systems
24

Evolution of Mobile Communication Systems
25
1960EarlyMobileorZeroGeneration(0G)Mobilesystem
In1960acarMobileTelephone(MTA)systemwaslaunchedinSweden.
Theradiotelephonesystemcontained:
❖Composedofvacuumtubes→
weightof40kg
❖Radiotelephonesaretypically
mountedincars,trucks,….
❖Radiophoneshaveapowerful
transmitter→upto80Km.
❖Onecentralantennatowerper
region.
❖Limitednumberofavailable
channels→limitednumberof
radiotelephonesperregion.

Evolution of Mobile Communication Systems
26
1979FirstGeneration(1G)Mobilesystem
Thefirstcommerciallyautomatedcellularnetworkwas
launchedinJapanbyNipponTelegraphandTelephone
(NTT)in1979.
InEurope→NordicMobileTelephony(NMT).
InUK→TotalAccessCommunicationSystem(TACS).
❑InAmerica→AdvancedMobilePhone
Service(AMPS).

27
1979FirstGeneration(1G)Mobilesystem
AMPShadthefollowingspecifications:
❖UseCellularConcepttoprovideservicetoageographicarea
❖Operatesinthe800-MHzband.
❖AnalogVoicecommunicationsusingFM
❖DigitalControlchannelsforsignaling
❖FDMA/FDDsystems
❖FrequencyReuse
❖Handoff/Handover
❖AdjustableMobilePowerlevels
❖MacroCells:1-40kmradius.
❖Theywerebasedondifferentstandardsso:incompatible
witheachother,limitedcapacityanddidnotsupport
roaming.
1.1 History of Mobile communication: 1G

28
1982-1992SecondGeneration(2G)Mobilesystem(GSM)
In1982→Grouptodevelopastandardforamobile
telephonesystem,
GlobalSystemforMobile(GSM),thatwouldoperateinthe
900MHzbandwidth.
Evolution of Mobile Communication Systems

29
1982-1992SecondGeneration(2G)Mobilesystem(GSM)
In1983(DigitalAMPS)D-AMPS
isapacket-switcheddataservice.
usestheexistingAMPSnetworktotransmitdataata
rateof19.2kb/s.
In1990,agroupof15operatorsfromacrossEurope
implementedGSM900.
ThefirstcommercialGSMnetworkwaslaunchedinJune,
1992inGermany.
Evolution of Mobile Communication Systems

30
1982-1992SecondGeneration(2G)Mobilesystem
(GSM)
ThesecondgenerationGSMhasthefollowing
specifications:
❖Usedigitaltechnologyandapplycellularconceptand
Circuitswitching.
❖Frequencyband(900,1800,1900MHz)andSupport
internationalroaming.
❖FDMA-TDMA/FDD →(8timeslot/Carrier)→(Limited
capacity).
❖Application(Voice,SMS,Data)→(Limitedno.of
services).
❖Limiteddatarate=9.6Kbps→(Low).
Evolution of Mobile Communication Systems

31
1994-1998SecondGeneration(2.xG)Mobilesystem
Supporttheuseofinternetappsonmobiles,using
WirelessApplicationsProtocol(WAP).
2.5Gstandardswereintroducedtoallow2Gequipmentto
bemodifiedanduserstationstobeSWupgraded
1)HighSpeedCircuitSwitchedData(HSCSD)→2.5G-GSM.
❖Increasesthedatarateto14.4Kbps,ascomparedto
theoriginal9.6KbpspertimeslotintheGSM.
❖Usingupto8consecutivetimeslotsachievesraw
transmissionrateofupto115.2kbps
Evolution of Mobile Communication Systems

32
2)GeneralPacketRadioService(GPRS)→2.5G-GSM.
❖Increasestheavailabledatarateto21.4Kb/sperslot.
whenusingall8timeslots=171.2kb/s.
❖PacketswitchingsuchasanInternetconnection.
❖GPRS uses a new channel coding methods are used that
provide higher payload rates per time slot.
❖GPRSoffersanumberofcodingschemeswithdifferent
FEClevelsoferrordetectionandcorrection,dependingon
theradiochannelconditionsandtherequirementsforthe
databeingsent.
❖ImplementationofGPRSrequirestheGSMoperatorto
installnewrouters,internetgatewaysattheBS,andnew
SWthatredefinestheBSGPRSairinterfacestandard.
Evolution of Mobile Communication Systems

33
3)EnhanceDatarateforGSMEvolution(EDGE)is
sometimesreferredtoasEnhancedGPRS,orEGPRS.
❖RequirestheadditionofnewHWandSWatexistingBSs.
Itintroducesanewdigitalmodulationformat,8-bitPhase
ShiftKeying(8-PSK),whichisusedinadditiontoGSM’s
standardGaussianMinimumShiftKeying(GMSK)
modulation.
❖EDGE+8-PSKmodulation+8timeslots➔arawpeak
throughputdatarateof473.6kb/s.Practically,only384
kb/scanbeachievedforasingleuser.
❖ThereareninedifferentModulationandCodingSchemes
(MCS)thatcanbeusedwithEDGE.
Evolution of Mobile Communication Systems

34
1999ThirdGeneration(3G)Mobilesystem(UMTS)
TheInternationalTelecommunicationUnion(ITU)defined3G
systemasbeingcapableofsupportinghighspeeddataranges
from144kb/stogreaterthan2Mb/s.
The3GevolutionforGSMandIS-136systemsleadsto
WidebandCDMA(W-CDMA),alsocalledUniversalMobile
TelecommunicationsSystem(UMTS)andthathasthefollowing
specifications:
❖Largenetworkcapacity
❖VoiceOverInternetProtocol(VOIP)
❖Multimediacommunications
❖Circuit-switchedandpacket-switched-basedservices
❖Improvedspectralefficiency
❖packet-basedairinterface➔userssharethesamewireless
networkandstayconnectedtotheInternet,anytime,
anywhere.
Evolution of Mobile Communication Systems

35
2005ThirdGeneration(3.xG)Mobilesystem
High-SpeedPacketAccess(HSPA)
High-SpeedDownlinkPacketAccess(HSDPA)isan
enhanced3Galsodubbed3.5G.Itsupportsdatarate
of14.0Mb/s
High-Speed UplinkPacketAccess(HSUPA)
enhancestheuplinkrateto5.76Mb/sknownas
3.75G.
HSPA+supportsMIMOwhichincreaserateto42
Mb/s
Evolution of Mobile Communication Systems

36
2008FourthGeneration(4G)Mobilesystem(LTE)
LongtermEvolution(LTE)isactuallya3.9Gtechnology.
LTEhasthefollowingspecifications:
❖Largenetworkcapacity
❖Downlinkpeakratesofatleast100Mbps
❖Anuplinkofatleast50Mbps
❖Videoconferencing
❖VoiceOverIP(VOIP)
❖Greatermobilityandlowcost
Evolution of Mobile Communication Systems

37
2006FourthGeneration(4G)Mobilesystem(LTE)
▪LTE-Advanced(LTE-A)
oFasterbroadband
oHighercapacity
oFlexiblesupportforwiderchannels(upto100
MHz)
oMoreantennas(MIMO)
oChannelaggregationforhigherdatarates
oPeakdatarate1Gbps/500Mbps
oLowlatencies
Evolution of Mobile Communication Systems

38
FifthGeneration(5G)Mobilesystem
Evolution of Mobile Communication Systems

39
Evolution of Mobile Communication Systems