Modelling and Simulation jquestions.pptx

joshuaclack73 10 views 13 slides May 19, 2024
Slide 1
Slide 1 of 13
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13

About This Presentation

jjj


Slide Content

Modelling and Simulation questions:

1.)

2.)

3.)

4.)

4. Simulate, using a table the velocity and position, a mass of 50kg with a force of 100N and damping value of
2.4 N.m.s”*. You can use the Excel file ‘spring_mass_damper.xisx’.

y 2

y CE mM : €. Reduce the damping to 0.9 N.m.s”1, how does this change the answers above?


Lx

a. How long does it take to reach a steady velocity?

b. What is the steady velocity?

5. Now repeat Q1-4 using MATLAB. You will find a Live Script named Ch3_System_Models.mix at:

https://drive.matlab.com/sharing/eb7dd51e-bd0d-4821-906b-cc2526a89bca

System models 2-Mechanical
wine
—f
Ley

Spring x
1/K

2.)

SAN 0 / > MATLAB Drive > Dynamics_Controlt
(Oh_System_Modelsmix= x 十

MATLAB Dive/Dynamics_Gontrol/Ch3_System_ Models mx [Read On] eee

B 2000
ㄴㄴ A
: &
ae | 1600
トー 2
f Damper dx 8
> 18 at 000 -
X 198,731
Y 496.828
4 f= ae - ユ ーーーーーー ; am
- O _ X 11.4234
= Dei で 5 Y 28.5584
6 damper=tf(1,[8 0]); 0
7

step(f*damper) ;ylabel('x position’) ;title( ‘Damper Step Response’). 0 200 400 600 800
Time (seconds)

Mass Step Response

| 600}

400
x
200}
10 mass=tf(1, [mM e @]);
11 step(f*mass,20);ylabel('x')5grid on;title('Mass Step Re ol
9 5 Time 19600009) 20

Mass Damper Step Response S|

4.)

massdamper=tf(1,[M 6 0]);
step(f*massdamper,maxt);ylabel('x');title('Mass Damper

a
L を x Mass Damper Step Response

600 |
f= 100 Y, 400

x
Ba 8 |
NM = se 一 一 ワーーーー ; 200
maxt = 32 ;~——O———— ;%Max time shown on x "| |

0
"fime (se6nds) °°

6. Simulate the angular position of a rotating mass with torque =6.3 N.m”", damping of c=0.7 N.m.s.rad””,
mass of 3kg, and radius of 0.7m. You may modify a previous Excel file for this.
a. How long does it take to reach a steady velocity?
b. What is the steady velocity?
c. Reduce the damping to of c=0.2 N.m.s.rad”*, how does this change the answers (a and b) above?

cv
32 0065 a om RISE AS the agua
—ACCElE AO y AUTRES, Fak Ly AD =
SEHEN $ ¡Racha Katy yea GRA Pad (3
Ce

i ( :
Ps à ezo mas az > = ET
MRC & Fo 068 m/s =

|
7. Thinking about the servo motor simulation in chapter 2, would it be possible to make a more realistic
simulation of the motor, including its inertia and damping? What would inertia add to the effect of the motor
moving and stopping at a desired point? (hint: think of trying to move a heavy coal truck on rails to a new
position)
Tags