Morphological Image Processing

kumari36 2,684 views 35 slides Oct 31, 2019
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Dilation and Erosion


Slide Content

MORPHOLOGICAL IMAGE
PROCESSING
D.SHUNMUGAKUMARI
ASSITANT PROFESSOR
DEPARTMENT OF INFORMATION TECHNOLOGY

INTRODUCTION
Morphology
About the formand structureof animals and
plants
Mathematical morphology
Using set theory
Extract image component
Representation and descriptionof region shape

INTRODUCTION
Setsin mathematical morphology represent
objectsin an image
Example
◦Binary image: the elements of a set is the
coordinate (x,y)of the pixels, in Z
2
◦Gray-level image: the element of a set is the
triple, (x, y, gray-value), in Z
3

OUTLINE
Preliminaries –set theory
Dilation and erosion
Opening and closing

PRELIMINARIES –SET THEORY
A be a set in Z
2
.
a = (a
1, a
2) is an element of A.
a is notan element of A
Null (empty) set: Aa Aa

SET OPERATIONS
A is a subsetof B: every element of A is an
element of another set B
Union
Intersection
Mutually exclusiveBA BAC BAC BA 

GRAPHICAL EXAMPLES

GRAPHICAL EXAMPLES (CONT.) AwwA
c
  BwAwwBA  ,

LOGIC OPERATIONS ON BINARY
IMAGES
Functionally complete operations
AND, OR, NOT

BA BA AB

OUTLINE
Preliminaries
Dilation and erosion
Opening and closing

DILATION  )ˆ(  ABzBA
z
B:structuring
element

DILATION
Dilation is one of the basic operation in
mathematical morphology.
Dilation adds the pixels to the Boundaries of
an object in an image.
Dilation process in which binary image is
expanded from its original image.
W B

DILATION FORMULA,
f(x) h(s)=max{f(x)+h(s-x)}
f(x) original Image
EXOR operation
s Structuring pattern matching.

DILATION EXAMPLE
Original Image expanded Dilation

EROSION ABzBA
z )(
z: displacement
B:structuring
element

EROSION(CONT.)

EROSION
•Erosion is the Reverse process of the Dilation.
•Erosion Remove the pixel on object boundaries.
• B W

EROSION FORMULA
f(x) h(s)=min{f(s+x)+h(x)}
f(x) original Image
EXNOR operation
s Structuring pattern matching.

EROSION EXAMPLE
Original Image EXNOR Erosion

STRUCTURING ELEMENT
The number of pixel added or removed from the
object in an image depends on the size and shape
structuring element.
•It’s s matrix 1’s and 0’s.
The center pixel of the structuring element,
called the origin.

DILATION AND EROSION ARE DUALS 
c
z
c
ABzBA )( ) (   
cc
zABz )( 
  )( 
c
z
ABz
  )ˆ(  ABzBA
z BA
cˆ

APPLICATION: BOUNDARY
EXTRACTION
Extract boundary of a set A:
First erode A (make A smaller)
A –erode(A)) (BAA
=

APPLICATION: BOUNDARY EXTRACTION
Using 5x5 structuring elementoriginal image

OUTLINE
Preliminaries
Dilation and erosion
Opening and closing

OPENING
Dilation: expands image w.r.t structuring
elements
Erosion: shrink image
erosion+dilation = original image
Opening= erosion + dilationBBABA  ) (

OPENING (CONT.)

OPENING (CONT.)
Smooththe contour of an image, breaks narrow isthmuses,
eliminates thin protrusions
Find contour Fill in contour

CLOSING
Closing= dilation + erosionBBABA )(

CLOSING (CONT.)
Find contour Fill in contour
Smooththe object contour, fusenarrow breaks and long
thin gulfs, eliminatesmall holes, and fill in gaps

Noisy
image
opening
Remove
outer
noise
Remove
inner
noise
closing