MULTI COMPARTMENT MODEL BIOPHARMACEUTICS..pdf

286 views 24 slides Jan 21, 2025
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

B.PHARMACY VI SEM


Slide Content

MULTI-COMPARTMENT
MODELS
M. BALASUNDARESAN,
ASSISTANT PROFESSOR,
ARUNAI COLLEGE OF PHARMACY,
TIRUVANNAMALAI.

•Ideallyatruepharmacokineticmodelshouldbetheonewitharateconstantfor
eachtissueundergoingequilibrium.
•Thereforebestapproachistopooltogethertissuesonthebasisofsimilarityin
theirdistributioncharacteristics.
•Thedrugdispositionoccursbyfirstorder.
•Multi-compartmentcharacteristicsarebestdescribedbyadministrationasi.v
bolusandobservingthemannerinwhichtheplasmaconcentrationdeclineswith
time.
Theno.Ofexponentialsrequiredtodescribesuchaplasmalevel-timeprofile
determinestheno.Ofkineticallyhomogeneouscompartmentsintowhicha
drugwilldistribute.
Thesimplestandcommonestisthetwocompartmentmodelwhichclassifiesthe
bodytissuesintwocategories:
1.Centralcompartmentorcompartment1
2.Peripheralortissuecompartmentorcompartment 2.

ADMINISTRATION:
Eliminationfromcentra
T
l
W
com
O
p
C
ar
O
tm
M
en
P
t
ARTMENTOPENMODEL-IVBOLUS
Fig:
•Aftertheivbolusofadrugthedeclineintheplasmaconc.Isbi-exponential.
•Twodispositionprocesses-distributionandelimination.
•ThesetwoprocessesareonlyevidentwhenasemilogplotofCvs.Tis
made.
•Initially,theconc.Ofdruginthecentralcompartmentdeclinesrapidly,due
tothedistributionofdrugfromthe centralcompartmenttotheperipheral
compartment.Thisiscalleddistributivephase.
1
Central
2
peripheral

ExtendingtherelationshipX=vdC
Dcc=K21xp–K12xc–KExc
Dtvp vc vc
X=Amt.Ofdruginthebodyatanytimetremainingtobeeliminated
C=drugconcinplasma
Vd =proportionalityconstapp.Volumeofdistribution
Xcandxp=amtofdruginC1andC2
Vcandvp=apparentvolumesofC1andC2
=K12xc–K21xp
Vc vp Onintegrationequationgivesconcofdrugincentraland
peripheralcompartmentsatanygiventimet
Cp=xo[(
Vc
K21–a)e
-at+(K12–b)e
-bt]
b–a a–b
Xo=ivbolusdose

•Therelationbetweenhybridandmicroconstantsisgivenas:
a+b= K12+K21+KE
Ab= K21KE
Cc=ae
-at+be
-bt
Cc=distributionexponent+elimination
exponent
AandBarehybridconstantsfortwoexponentsandcanberesolvedbygraph
bymethodofresiduals.
A=X0[K21-A]=CO[K21–A]
VC
B =X0
B –A
[K21-B]=
B –A
CO[K21–B]
VCA–B A–B
CO=Plasmadrugconcentrationimmediatelyafteri.v.Injection

•Methodofresiduals:thebiexponentialdispositioncurveobtainedafteri.V.
Bolusofadrugthatfitstwocompartmentmodelcanberesolvedintoits
individualexponentsbythemethodofresiduals.
C=ae
-at+be
-bt
Fromgraphtheinitialdeclineduetodistributionismorerapidthantheterminal
declineduetoeliminationi.E.Therateconstanta>>bandhencetheterme
-at
approacheszeromuchfasterthane
–bt
C=Be
-bt
LogC=logB–bt/2.303C=backextrapolatedpl.Conc.
•AsemilogplotofCvstyieldstheterminallinearphaseofthecurvehaving
slope–b/2.303andwhenbackextrapolatedtotimezero,yieldsy-interceptlog
B.Thet
1/2fortheeliminationphasecanbeobtainedfromequation
•t
1/2=0.693/b.
•Residualconcvaluescanbefoundas-
Cr=C–C=ae
-at
Logcr=logA–at
2.303
Asemilogplotcrvstgivesastraightline.

Ke=abc
Ab+ Ba
K12=ab(b-a)
2
C0(Ab +Ba)
K21=Ab+ Ba
C0
•Fortwocompartmentmodel,KEistherateconstantforeliminationofdrug
fromthecentralcompartmentandbistherateconstantforeliminationfrom
theentirebody.Overalleliminationt1/2canbecalculatedfromb.
Areaunder(auc)=a+b
Thecurve ab
X0=X0App.Volumeofcentral=
compartment C0KE(AUC)

App.Volumeof =VP=VCK12
PeripheralcompartmentK21
Apparentvolumeofdistributionatsteadystateorequilibrium
Vd,ss=VC+VP
Vd,area=X0
BAUC
Totalsystemicclearence=clt=bvd
Renalclearence=clr=dxu=KEVC
Dt
The rateof excretionof unchangeddruginurinecanberepresentedby:
dxu=KE Ae
-at+KEBe
-bt
Dt
Theaboveequationcanberesolvedintoindividualexponents bythemethodofresiduals.

TWO–COMPARTMENTOPENMODEL-I.V.
NFIUSION
Theplasmaorcentralcompartmentconcofadrugwhenadministeredasconstantrate(0order)i.V.Infusionis
givenas:
C =R0[1+(KE-b)e
-at+(KE-a)e
-bt]
VCKE b–a a-b
Atsteadystate(i.E.Attime infinity)thesecondandthethirdterminthebracketbecomeszeroandtheequation
reducesto:
Css=R0
Vcke
NowVCKE =vdb
Css= r0=r0
Vdbclt
TheloadingdoseX0,L=cssvc=R0
Ke
1
Central
2
Peripheral

TWO-COMPARTMENTOPENMODEL-

First-E
ordX
erT
absR
orpA
tioV
n:ASCULARADMINISTRATION
•Foradrugthatentersthebodybyafirst-orderabsorptionprocessand
distributedaccordingtotwo compartmentmodel,therateofchangeindrug
concinthecentralcompartmentisdescribedbythreeexponents:
•Anabsorptionexponent,andthetwousualexponentsthatdescribedrug
disposition.
Theplasmaconcatanytimetis
C=ne
-kat+le
-at+me
-bt
C=absorption+distribution+elimination
Exponentexponentexponent
•Besidesthemethodofresiduals,kacanalsobefoundbyloo-riegelmanmethod
fordrugthatfollowstwo-compartmentcharacteristics.
•Despiteitscomplexity,themethodcanbeappliedtodrugsthatdistributeinany
numberofcompartments.

CALCULATINGKausingWagner-
nelsonmethod(Bioavailability
parameters)

WAGNER-NELSONSMETHOD
THEORY:Theworkingequationscanbederivedfromthemassbalance
equation:Givesthefollowingeqautionwithtimeandmassbalance
•AboveequationIntegratinggives
• Totheequationamount
absorbedVERSUSTIME

WAGNER-NELSONSMETHOD
•Takingthistoinfinitywherecpequals0
•Finally(Amax-A),theamountremainingtobeabsorbedcanalsobe
expressedastheamountremainingintheGI,xg
•Wecanusethisequationtolookattheabsorptionprocess.If,andonlyif,
absorptionisasinglefirstorderprocess

WAGNER-NELSONSMETHOD
•Exampledataforthemethodofwagner-nelsonkel(fromIVdata)=0.2hr
-
Time
(hr)
Plasma
Concentratio
n
(mg/L)
Column
3
ΔAUC
Column
4
AUC
Column5
kel*AUC
A/V
[Col2+
Col5]
(Amax-A)/V
0.0 0.0 0.0 0.0 0.0 0.0 4.9
1.0 1.2 0.6 0.6 0.12 1.32 3.58
2.0 1.8 1.5 2.1 0.42 2.22 2.68
3.0 2.1 1.95 4.05 0.81 2.91 1.99
4.0 2.2 2.15 6.2 1.24 3.44 1.46
5.0 2.2 2.2 8.4 1.68 3.88 1.02
6.0 2.0 2.1 10.5 2.1 4.1 0.8
8.0 1.7 3.7 14.2 2.84 4.54 0.36
10.0 1.3 3.0 17.2 3.44 4.74 0.16
12.0 1.0 2.3 19.5 3.9 4.9 -
∞ 0.0 5.0 24.5 4.9 4.9 -

WAGNER-NELSONSMETHOD
•Thedata(Amax-A)/Vversustimecanbeplottedonsemi-logandlinear
graphpaper

WAGNER-NELSONSMETHOD
•Plotting(Amax-A)/Vversustimeproducesastraightlineonsemi-loggraphpaperanda
curvedlineonlineargraphpaper.Thiswouldsupporttheassumptionthatabsorptioncanbe
describedasasinglefirstprocess.Thefirst-orderabsorptionrateconstant,ka,canbe
calculatedtobe0.306hr
-1fromtheslopeofthelineonthesemi-loggraphpaper.
ADVANTAGES:
•Theabsorptionandeliminationprocessescanbequitesimilarandaccuratedeterminationsof
kacanstillbemade.
•Theabsorptionprocessdoesn'thavetobefirstorder.Thismethodcanbeusedtoinvestigate
theabsorptionprocess.
DISADVANTAGES:
•Themajordisadvantageofthismethodisthatyouneedtoknowtheeliminationrateconstant,
fromdatacollectedfollowingintravenousadministration.
•Therequiredcalculationsaremorecomplex.

RESIDUALMETHODOR
FEATHERINGTECHNIQUE
•Absowhenadrugisadministeredbyextravascularroute,absorptionisa
prerequisiteforitstherapeuticactivity.
•Theabsorptionrateconstantcanbecalculatedbythemethodof
residuals.
•Thetechniqueisalsoknownasfeathering,peelingandstripping.

φItiscommonlyusedinpharmacokineticstoresolvea
multiexponentialcurveintoitsindividualcomponents.
φForadrugthatfollowsone-compartmentkineticsand
administeredextravascularly,theconcentrationofdrug
inplasmaisexpressedbyabiexponentialequation.
C=
????????????�??????0
??????�(????????????−??????�)
[e
-K
E
t–e
-K
a
t] (1)
IfKaFX0/Vd(Ka-KE)=A,ahybridconstant,then:
C=Ae
-K
E
t–Ae
-K
a
t
(2)

φDuring
almost
theeliminationphase,whenabsorptionis
over,Ka<<KEandthevalueofsecond
exponentiale
-Katapproacheszerowhereasthefirst
exponentiale
-KEtretainssomefinitevalue.
φAtthistime,theequation(2)reducesto:
??????

=??????&#3627408466;

??????&#3627408440;??????(3)
φInlogform,theaboveequationis:
LogC

=logA-
??????&#3627408440;??????
2.303
(4)

Where,
C
−=backextrapolatedplasmaconcentrationvalues
φAplotoflogCversust yieldabiexponentialcurvewitha
terminallinearphasehavingslope–KE/2.303
φBackextrapolationofthisstraightlinetotimezeroyieldsy-
interceptequaltologA.
70

Plasmaconc.-Timeprofileafteroraladministrationofasingledoseofadrug

φSubtractionoftrueplasmaconcentrationvaluesi.e.
equation(2)fromtheextrapolatedplasma
valuesi.e.equation(3)yieldsaseries
concentration
ofresidual
concentrationvalueCτ.
(C
−-C)=Cτ=A e
-K
a
t
(5)
φIn logform,the equationis:
τ
2.303
log C =logA-
??????????????????
(6)

φAplotoflogCτversustyieldsastraightlinewithslope-
Ka/2.303andy-interceptlogA.
φThus,themethodofresidualenablesresolutionofthe
biexponentialplasmalevel-timecurveintoitstwo
exponentialcomponents.
φThetechniqueworksbestwhenthedifferencebetween
KaandKEislarge(Ka/KE≥3).