Multiple integrals

SomaShabbir 2,399 views 84 slides Nov 22, 2019
Slide 1
Slide 1 of 84
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84

About This Presentation

Multiple Integrals


Slide Content

MULTIPLE INTEGRALS
12

12.6
Triple Integrals
In this section, we will learn about:
Triple integrals and their applications.
MULTIPLE INTEGRALS

TRIPLE INTEGRALS
Just as we defined single integrals for
functions of one variable and double integrals
for functions of two variables, so we can
define triple integrals for functions of three
variables.

Let’s first deal with the simplest case
where fis defined on a rectangular box:  , , , ,B x y z a x b c y d r z s      
Equation 1 TRIPLE INTEGRALS

The first step is
to divide B into
sub-boxes—by
dividing:
The interval [a, b] into lsubintervals [x
i-1, x
i]
of equal width Δx.
[c, d] into m subintervals of width Δy.
[r, s] into n subintervals of width Δz.
TRIPLE INTEGRALS

The planes through
the endpoints of these
subintervals parallel to
the coordinate planes
divide the box Binto
lmnsub-boxes
Each sub-box has volume ΔV = ΔxΔyΔz
TRIPLE INTEGRALS   
1 1 1
, , ,
ijk i i j j k k
B x x y y z z
  
  


Then, we form the triple Riemann sum
where the sample point
is in B
ijk. 
* * *
1 1 1
,,
l m n
ijk ijk ijk
i j k
f x y z V
  
  
* * *
,,
ijk ijk ijk
x y z
Equation 2 TRIPLE INTEGRALS

By analogy with the definition of a double
integral (Definition 5 in Section 11.1),
we define the triple integral as the limit of
the triple Riemann sums in Equation 2.
TRIPLE INTEGRALS

The triple integralof fover the box Bis:
if this limit exists.
Again, the triple integral always exists if f
is continuous. 
 
* * *
,,
1 1 1
,,
lim , ,
B
l m n
ijk ijk ijk
l m n
i j k
f x y z dV
f x y z V

  



Definition 3 TRIPLE INTEGRAL

We can choose the sample point to be any
point in the sub-box.
However, if we choose it to be the point
(x
i, y
j, z
k) we get a simpler-looking expression:   
,,
1 1 1
, , lim , ,
l m n
i j k
l m n
i j kB
f x y z dV f x y z V

  

TRIPLE INTEGRALS

Just as for double integrals, the practical
method for evaluating triple integrals is
to express them as iterated integrals, as
follows.
TRIPLE INTEGRALS

FUBINI’S TH. (TRIPLE INTEGRALS)
If fis continuous on the rectangular box
B= [a, b] x [c, d] x [r, s], then 
 
,,
,,
B
s d b
r c a
f x y z dV
f x y z dxdy dz

  
Theorem 4

The iterated integral on the right side of
Fubini’s Theorem means that we integrate
in the following order:
1.With respect to x(keeping yand zfixed)
2.With respect to y(keeping zfixed)
3.With respect to z
FUBINI’S TH. (TRIPLE INTEGRALS)

There are five other possible orders
in which we can integrate, all of which
give the same value.
For instance, if we integrate with respect to y,
then z, and then x, we have: 
 
,,
,,
B
b s d
a r c
f x y z dV
f x y z dy dz dx

  
FUBINI’S TH. (TRIPLE INTEGRALS)

Evaluate the triple integral
where Bis the rectangular box2
B
xyz dV   , , 0 1, 1 2, 0 3B x y z x y z       
Example 1 FUBINI’S TH. (TRIPLE INTEGRALS)

We could use any of the six possible orders
of integration.
If we choose to integrate with respect to x,
then y, and then z, we obtain the following
result.
Example 1 FUBINI’S TH. (TRIPLE INTEGRALS)

3 2 1
22
0 1 0
1
22
32
01
0
2
32
01
13
2 2 2 3
33
00
10
2
2
3 27
4 4 4 4
B
x
x
y
y
xyz dV xyz dx dy dz
x yz
dy dz
yz
dy dz
y z z z
dz dz













  
   
  
  
   


 Example 1 FUBINI’S TH. (TRIPLE INTEGRALS)

Now, we define the triple integral over
a general bounded region Ein three-
dimensional space (a solid) by much the same
procedure that we used for double integrals.
See Definition 2 in Section 11.3
INTEGRAL OVER BOUNDED REGION

We enclose Ein a box Bof the type given
by Equation 1.
Then, we define a function Fso that it agrees
with fon Ebut is 0 for points in Bthat are
outside E.
INTEGRAL OVER BOUNDED REGION

By definition,
This integral exists if fis continuous and
the boundary of Eis “reasonably smooth.”
The triple integral has essentially the same
properties as the double integral (Properties 6–9
in Section 11.3).   , , , ,
EB
f x y z dV F x y z dV 
INTEGRAL OVER BOUNDED REGION

We restrict our attention to:
Continuous functions f
Certain simple types of regions
INTEGRAL OVER BOUNDED REGION

TYPE 1 REGION
A solid region is said to be of type 1
if it lies between the graphs of
two continuous functions of xand y.

That is,
where Dis the projection of E
onto the xy-plane.
TYPE 1 REGION    12
, , , , , ,E x y z x y D u x y z u x y    Equation 5

Notice that:
The upper boundary of the solid Eis the surface
with equation z= u
2(x, y).
The lower boundary is the surface z= u
1(x, y).
TYPE 1 REGIONS

By the same sort of argument that led to
Formula 3 in Section 11.3, it can be shown
that, if Eis a type 1 region given by
Equation 5, then   


2
1
,
,
, , , ,
u x y
u x y
ED
f x y z dV f x y z dz dA



  
Equation/Formula 6 TYPE 1 REGIONS

The meaning of the inner integral on
the right side of Equation 6 is that xand y
are held fixed.
Therefore,
u
1(x, y) and u
2(x, y) are regarded as constants.
f(x, y, z) is integrated with respect to z.
TYPE 1 REGIONS

In particular, if
the projection Dof E
onto the xy-plane
is a type I plane
region, then   
1 2 1 2
, , , ( ) ( ), ( , ) ( , )
E
x y z a x b g x y g x u x y z u x y

     
TYPE 1 REGIONS

Thus, Equation 6 becomes: 
 
22
11
( ) ( , )
( ) ( , )
,,
,,
E
b g x u x y
a g x u x y
f x y z dV
f x y z dz dy dx

  
Equation 7 TYPE 1 REGIONS

If, instead, Dis a type IIplane region, then  
1 2 1 2
, , , ( ) ( ), ( , ) ( , )
E
x y z c y d h y x h y u x y z u x y

     
TYPE 1 REGIONS

Then, Equation 6 becomes: 
 
22
11
( ) ( , )
( ) ( , )
,,
,,
E
d h y u x y
c h y u x y
f x y z dV
f x y z dz dx dy

  
Equation 8 TYPE 1 REGIONS

Evaluate
where Eis the solid tetrahedron
bounded by the four planes
x= 0, y= 0, z= 0, x+ y+ z= 1E
zdV
Example 2 TYPE 1 REGIONS

When we set up a triple integral, it’s wise
to draw twodiagrams:
The solid region E
Its projection Don the xy-plane
Example 2 TYPE 1 REGIONS

The lower boundary of the tetrahedron is
the plane z= 0 and the upper boundary is
the plane x+ y+ z= 1 (or z= 1 –x–y).
So, we use u
1(x, y) = 0
and u
2(x, y) = 1 –x–y
in Formula 7.
Example 2 TYPE 1 REGIONS

Notice that the planes x+ y+ z= 1 and z= 0
intersect in the line x+ y= 1 (or y= 1 –x)
in the xy-plane.
So, the projection of E
is the triangular region
shown here, and we have
the following equation.
Example 2 TYPE 1 REGIONS

This description of Eas a type 1 region
enables us to evaluate the integral as follows.  , , 0 1,0 1 ,0 1
E
x y z x y x z x y

        
E. g. 2—Equation 9TYPE 1 REGIONS

 
 


1
2
1 1 1 1 1
0 0 0 0 0
0
2
11
1
2
00
1
3
1
1
2
0
0
1
3
1
6
0
1
4
0
2
1
1
3
1
111
6 4 24
z x y
x x y x
E z
x
yx
y
z
z dV z dz dy dx dy dx
x y dy dx
xy
dx
x dx
x
  
   








  






  


     


 Example 2 TYPE 1 REGIONS

TYPE 2 REGION
A solid region Eis of type 2if it is of the form
whereDis the projection of E
onto the yz-plane.  12
, , , , ( , ) ( , )E x y z y z D u y z x u y z   

The back surface is x= u
1(y, z).
The front surface is x= u
2(y, z).
TYPE 2 REGION

Thus, we have: 
 
2
1
( , )
( , )
,,
,,
E
u y z
u y z
D
f x y z dV
f x y z dx dA




 
Equation 10 TYPE 2 REGION

TYPE 3 REGION
Finally, a type 3region is of the form
where:
Dis the projection of E
onto the xz-plane.
y= u
1(x, z) is the left
surface.
y= u
2(x, z) is the right
surface.   12
, , , , ( , ) ,E x y z x z D u x z y u x z   

For this type of region, we have:   
1
2( , )
( , )
, , , ,
u x z
u x z
ED
f x y z dV f x y z dy dA


  
Equation 11 TYPE 3 REGION

In each of Equations 10 and 11, there may
be two possible expressions for the integral
depending on:
Whether Dis a type Ior type IIplane region
(and corresponding to Equations 7 and 8).
TYPE 2 & 3 REGIONS

Evaluate
where Eis the region bounded by
the paraboloid y= x
2
+ z
2
and the plane y= 4.22
E
x z dV
BOUNDED REGIONS Example 3

The solid Eis
shown here.
If we regard it as
a type 1 region,
then we need to consider its projection D
1
onto the xy-plane.
Example 3 TYPE 1 REGIONS

That is the parabolic
region shown here.
The trace of y= x
2
+ z
2
in the plane z= 0 is
the parabola y= x
2
Example 3 TYPE 1 REGIONS

From y= x
2
+ z
2
, we obtain:
So, the lower boundary surface of Eis:
The upper surface is:2
z y x   2
z y x   2
z y x
Example 3 TYPE 1 REGIONS

Therefore, the description of Eas a type 1
region is:  
2 2 2
, , 2 2, 4,
E
x y z x x y y x z y x

         
Example 3 TYPE 1 REGIONS

Thus, we obtain:
Though this expression is correct,
it is extremely difficult to evaluate.2
22
22
24
22
2
E
yx
x y x
x y dV
x z dz dy dx

  



  
Example 3 TYPE 1 REGIONS

So, let’s instead consider Eas a type 3
region.
As such, its projection D
3
onto the xz-plane is
the disk x
2
+ z
2
≤ 4.
Example 3 TYPE 3 REGIONS

Then, the left boundary of Eis the paraboloid
y= x
2
+ z
2
.
The right boundary is the plane y= 4.
Example 3 TYPE 3 REGIONS

So, taking u
1(x, z) = x
2
+ z
2
and u
2(x, z) = 4
in Equation 11, we have: 
22
3
3
4
2 2 2 2
2 2 2 2
4
xz
ED
D
x y dV x z dy dA
x z x z dA


  

   
  

Example 3 TYPE 3 REGIONS

This integral could be written as:
However, it’s easier to convert to
polar coordinates in the xz-plane:
x= r cos θ, z= r sin θ 
2
2
24
2 2 2 2
24
4
x
x
x z x z dz dx

  
  
Example 3 TYPE 3 REGIONS

That gives: 
 
 
3
2 2 2 2 2 2
22
2
00
22
24
00
2
35
0
4
4
4
4 128
2
3 5 15
ED
x z dV x z x z dA
r r r dr d
d r r dr
rr






    



  


 


Example 3 TYPE 3 REGIONS

Recall that:
If f(x) ≥ 0, then the single integral
represents the area under
the curve y= f(x) from ato b.
If f(x, y) ≥ 0, then the double integral
represents the volume under
the surface z= f(x, y) and above D.()
b
a
f x dx ( , )
D
f x y dA
APPLICATIONS OF TRIPLE INTEGRALS

The corresponding interpretation of a triple
integral , where f(x, y, z) ≥ 0,
is not very useful.
It would be the “hypervolume”
of a four-dimensional (4-D) object.
Of course, that is very difficult to visualize.( , , )
E
f x y z dV
APPLICATIONS OF TRIPLE INTEGRALS

Remember that Eis just the domain
of the function f.
The graph of f lies in 4-D space.
APPLICATIONS OF TRIPLE INTEGRALS

Nonetheless, the triple integral
can be interpreted in different ways
in different physical situations.
This depends on the physical interpretations
of x, y, zand f(x, y, z).
Let’s begin with the special case where
f(x, y, z) = 1 for all points in E.( , , )
E
f x y z dV
APPLICATIONS OF TRIPLE INTEGRALS

Then, the triple integral does represent
the volume of E:
E
V E dV
Equation 12 APPLNS. OF TRIPLE INTEGRALS

For example, you can see this in the case
of a type 1 region by putting f(x, y, z) = 1
in Formula 6: 
2
1
( , )
( , )
21
1
( , ) ( , )
u x y
u x y
ED
D
dV dz dA
u x y u x y dA




  

APPLNS. OF TRIPLE INTEGRALS

From Section 11.3, we know this represents
the volume that lies between the surfaces
z= u
1(x, y) and z= u
2(x, y)
APPLNS. OF TRIPLE INTEGRALS

Use a triple integral to find the volume
of the tetrahedron Tbounded by the planes
x +2y +z =2
x =2y
x =0
z =0
Example 4 APPLICATIONS

The tetrahedron Tand its projection D
on the xy-plane are shown.
Example 4 APPLICATIONS

The lower boundary of Tis the plane z= 0.
The upper boundary is
the plane x+ 2y+ z= 2,
that is, z= 2 –x–2y
Example 4 APPLICATIONS

So, we have:
This is obtained by the same calculation
as in Example 4 in Section 11.3
 
1 1 / 2 2 2
0 / 2 0
1 1 / 2
0 / 2
1
3
22
x x y
x
T
x
x
V T dV dz dy dx
x y dy dx
  


  

   

Example 4 APPLICATIONS

Notice that it is not necessary to use
triple integrals to compute volumes.
They simply give an alternative method
for setting up the calculation.
APPLICATIONS Example 4

All the applications of double integrals
in Section 11.5 can be immediately
extended to triple integrals.
APPLICATIONS

For example, suppose the density function
of a solid object that occupies the region E
is:
ρ(x, y, z)
in units of mass per unit volume,
at any given point (x, y, z).
APPLICATIONS

Then, its massis: ,,
E
m x y z dV
Equation 13 MASS

Its momentsabout the three coordinate
planes are: 
 
 
,,
,,
,,
yz
E
xz
E
xy
E
M x x y z dV
M y x y z dV
M z x y z dV









Equations 14 MOMENTS

The center of massis located at the point
, where:
If the density is constant, the center of mass
of the solid is called the centroidof E. ,,x y z yz xy xz
MM M
x y z
m m m
  
Equations 15 CENTER OF MASS

The moments of inertiaabout the three
coordinate axes are:  
  
  
22
22
22
,,
,,
,,
x
E
y
E
z
E
I y z x y z dV
I x z x y z dV
I x y x y z dV









Equations 16 MOMENTS OF INERTIA

As in Section 11.5, the total electric charge
on a solid object occupying a region E
and having charge density σ(x, y, z) is: ,,
E
Q x y z dV
TOTAL ELECTRIC CHARGE

If we have three continuous random variables
X, Y, and Z, their joint density function is
a function of three variables such that
the probability that (X, Y, Z) lies in E is:    , , , ,
E
P X Y Z E f x y z dV
JOINT DENSITY FUNCTION

In particular,
The joint density function satisfies:
f(x, y, z) ≥ 0 
 
,,
,,
b d s
a c r
P a X b c Y d r Z s
f x y z dz dy dx
     
  
JOINT DENSITY FUNCTION , , 1f x y z dz dy dx

  


Find the center of mass of a solid of constant
density that is bounded by the parabolic
cylinder x= y
2
and the planes x= z, z= 0,
and x= 1.
Example 5 APPLICATIONS

The solid Eand its projection onto
the xy-plane are shown.
Example 5 APPLICATIONS

The lower and upper
surfaces of Eare
the planes
z= 0 and z= x.
So,we describe E
as a type 1 region:  
2
, , 1 1, 1,0E x y z y y x z x       
Example 5 APPLICATIONS

Then, if the density is ρ(x, y, z),
the mass is:
Example 5 APPLICATIONS2
2
11
10
11
1
E
x
y
y
m
dV
dz dxdy
xdxdy









  


APPLICATIONS 
 
2
1
2
1
1
1
4
1
1
4
0
1
5
0
2
1
2
1
4
55
x
xy
x
dy
y dy
y dy
y
y
















  




 Example 5

Due to the symmetry of Eand ρabout
the xz-plane, we can immediately say that
M
xz= 0, and therefore .
The other moments are calculated
as follows.0y
Example 5 APPLICATIONS

2
2
11
10
11
2
1
yz
E
x
y
y
M
x dV
x dz dxdy
x dxdy









  
 Example 5 APPLICATIONS

APPLICATIONS 
2
1
3
1
1
1
6
0
1
7
0
3
2
1
3
2
37
4
7
x
xy
x
dy
y dy
y
y


















 Example 5

 
2
2
2
11
10
2
11
1
0
11
2
1
1
6
0
2
2
2
1
37
x
xy
y
E
zx
y
z
y
M z dV z dz dxdy
z
dxdy
x dxdy
y dy















  
   


 Example 5 APPLICATIONS

Therefore, the center of mass is: 
 
55
7 14
, , , ,
,0,
yz xyxz
MMM
x y z
m m m




Example 5 APPLICATIONS
Tags