multiple sequence and pairwise alignment.pdf

2,120 views 7 slides Dec 27, 2023
Slide 1
Slide 1 of 7
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7

About This Presentation

This document provides information about multiple sequence alignment and pairwise alignment...


Slide Content

Pairwiseandmultiplesequencealignment(MSA)Pairwisealignmentandmultiplesequencealignment(MSA)arethetwoprimarycategoriesofsequencealignment.PairwiseAlignment:Pairwisealignmentisacomputationaltechniquethatentailsthecomparisonandalignmentoftwosequenceswiththeaimofidentifyingtheirsimilaritiesanddissimilarities.Theobjectiveistoascertaintheoptimalarrangementofsequenceswithaviewtomaximisingmatcheswhileminimisingmismatchesandindels.ThetwocommonlyusedalgorithmsforpairwisealignmentaretheNeedleman-Wunschalgorithm,whichisbasedondynamicprogrammingandisusedforglobalalignment,andtheSmith-Watermanalgorithm,whichisusedforlocalalignment.Thetechniqueofglobalalignmentinvolvesthecomparisonofthecompletelengthoftwosequences,whereaslocalalignmentiscentredonthedetectionofparticularregionsofsimilaritypresentwithinthesequences.MultipleSequenceAlignment(MSA):TheprocessofaligningthreeormoresequencessimultaneouslyisknownasMultipleSequenceAlignment(MSA).TheMSAmethodologyexpandsuponpairwisealignmentbyintegratingsupplementarysequencestounveilconservedregionsandevolutionaryconnectionsacrossamultitudeofsequences.Comparingrelatedsequencesfromdifferentspeciesoridentifyingcommonstructuralandfunctionalmotifsisaparticularlyvaluableapproach.ThealgorithmsutilisedinMultipleSequenceAlignment(MSA)canbebroadlyclassifiedintotwocategories:progressivemethodsanditerativemethods.ClustalWandT-Coffeeareexamplesofprogressivemethodsutilisedinsequencealignment.Thesemethodsprogressivelyconstructthealignmentbyinitiallyaligningpairsofsequencesandsubsequentlyintegratingadditionalsequences.Iterativetechniques,exemplifiedbyMUSCLEandMAFFT,iterativelyenhancethealignmentbyaligningsubsetsofsequencesandrevisingthealignmentbasedontheinitialoutcomes.Pairwisealignmentandmultiplesequencealignment(MSA)arefundamentaltechniquesinthefieldofbioinformatics.Thesemethods

enablescholarstoscrutinisegeneticandproteinsequences,exploreevolutionaryconnections,detectconservedregions,andforecastfunctionalcomponents.Theselectionofthealignmenttechniqueiscontingentupontheparticularresearchinquiry,thequantityofsequencesundercomparison,andtheintendeddegreeofsensitivityandprecision.Methodsofpairwisesequencealignment:Varioustechniquesexistforaligningsequencesinpairs,suchas:DynamicProgramming:Dynamicprogrammingisapopularapproachforglobalpairwisesequencealignment,withtheNeedleman-Wunschalgorithmbeingaprominentexample.Thealgorithmgeneratesanalignmentmatrixthroughastepwiseprocessofassigningscorestoeveryconceivablealignmentofpairsofsubsequences.Subsequently,thematrixisemployedtoretracethestepsandascertainthemostadvantageousalignmentwiththemaximumscore.Smith-WatermanAlgorithm:TheSmith-Watermanalgorithmisafrequentlyutilisedmethodforconductinglocalpairwisesequencealignment.ThealgorithminquestionbearsresemblancetotheNeedleman-Wunschalgorithm,albeitwiththeaddedcapabilityofaccommodatinglocalalignmentsthroughthetreatmentofnegativescoresasnullvalues.Thealgorithminquestionemploysaniterativeapproachtoidentifythelocalalignmentthatyieldsthehighestscore.Thisisachievedbyprogressivelypopulatingscoresandsubsequentlybacktrackingfromthepositionthatyieldsthehighestscore.BLAST(BasicLocalAlignmentSearchTool):TheBasicLocalAlignmentSearchTool(BLAST)isaheuristicalgorithmthatiscommonlyemployedforswiftpairwisesequencealignment.Thetoolconductsasearchofadatabaseinordertoidentifylocalalignmentsthatexhibitahighdegreeofsimilaritytoagivenquerysequence.TheBLASTmethodologyemploysarapidandeffectivecomputationalalgorithmthatconcentratesonidentifyingnoteworthymatchesthroughtheidentificationofhigh-scoring

segmentpairs(HSPs).Comparinglargedatabasesofsequencesisespeciallyadvantageous.FASTA(FastAll-At-OnceSequenceComparison):TheFASTAalgorithm,knownasFastAll-At-OnceSequenceComparison,isacommonlyemployedmethodforconductingpairwisesequencealignment.Themethodologyemployedinvolvesaheuristicalgorithmtolocateproximatesimilaritiesamongsequences.TheFASTAalgorithmemploysadynamicprogramming-basedapproachtoidentifyhigh-scoringalignmentsbyinitiallysearchingforshortwordmatchesbetweenthetwosequences.Thismethodoffersarapidandhighlyresponsiveapproachtocomparingsequences.DotPlot:Thedotplotisagraphicaltechniqueemployedtorepresentpairwisesequencealignments.Theprocessentailstherepresentationofasequenceonthehorizontalaxisandanothersequenceontheverticalaxis.Everypointonthegraphcorrespondstoasetofalignedresidues,anddotsaresituatedatthelocationswheretheresiduesexhibitsimilarity.Dotplotsofferarapidandconcisegraphicalrepresentationoftheresemblancesanddistinctionsamongsequences.Theaforementionedtechniquesexhibitdifferenceswithrespecttotheircomputationalintricacy,responsiveness,andvelocity.Theselectionofapairwisealignmenttechniqueiscontingentuponvariousfactors,includingbutnotlimitedtothelengthofthesequences,thedesireddegreeofsensitivity,thecomputationalresourcesathand,andtheparticularresearchgoals.MethodsofMultipleSequenceAlignment:MultipleSequenceAlignment(MSA)isamorecomplextaskcomparedtopairwisealignment,asitinvolvesaligningthreeormoresequencessimultaneously.SeveralmethodshavebeendevelopedforMSA,including:ProgressiveMethods:ProgressivemethodsarecommonlyusedforMSA.Thesealgorithmsbuildthealignmentprogressivelybyinitiallyaligningpairs

ofsequencesandthenincorporatingadditionalsequencesonebyone.Thealignmentisconstructedinahierarchicalmanner,usingaguidetreethatrepresentstheevolutionaryrelationshipsbetweenthesequences.PopularprogressivemethodsincludeClustalW,ClustalOmega,andT-Coffee.IterativeMethods:Iterativemethods,alsoknownasiterativerefinementmethods,improvethealignmentiterativelybyrefininganinitialalignment.Thesealgorithmstypicallyinvolvethreesteps:(a)generatinganinitialalignmentusingapairwisealignmentalgorithm,(b)estimatinganewalignmentbasedontheinitialalignment,and(c)repeatingtheprocessuntilconvergence.CommoniterativemethodsincludeMUSCLE(MultipleSequenceComparisonbyLog-Expectation),MAFFT(MultipleAlignmentusingFastFourierTransform),andProbCons(Probability-basedConsistency).HiddenMarkovModel(HMM)-basedMethods:HMM-basedmethodsuseprobabilisticmodels,knownasHiddenMarkovModels,toalignmultiplesequences.Thesealgorithmsconstructastatisticalmodelthatrepresentstheconservationandvariationofresiduesacrossthesequences.PopularHMM-basedmethodsincludeHMMERandSAM(StatisticalAlignmentModel).Consensus-basedMethods:Consensus-basedmethodsaimtofindaconsensussequencethatrepresentsthemostlikelyalignmentoftheinputsequences.Thesealgorithmsconsiderbothpairwiseandmultiplealignmentstoidentifythemostconservedregionsandcommonpatternsacrossthesequences.Consensus-basedmethodsareoftenusedinconjunctionwithotheralignmentalgorithms.Progressive-IterativeMethods:Progressive-iterativemethodscombinetheadvantagesofbothprogressiveanditerativeapproaches.Theystartwithprogressivealignmenttobuildaninitialalignmentandthenrefineititeratively.Thesemethodsattempttostrikeabalancebetweenspeedandaccuracy.Examplesofprogressive-iterativemethodsincludePOA(PartialOrderAlignment)andDIALIGN.

EachMSAmethodhasitsownstrengths,limitations,andcomputationalrequirements.Thechoiceofmethoddependsonfactorssuchasthenumberandlengthofsequences,thedesiredalignmentquality,theavailablecomputationalresources,andthespecificresearchgoals.Itisoftenrecommendedtocompareandevaluatetheresultsobtainedfrommultiplealignmentmethodstoensuretherobustnessofthealignment.BLAST(BasicLocalAlignmentSearchTool):TheBasicLocalAlignmentSearchTool(BLAST)isafrequentlyemployedsoftwareapplicationutilizedforexpeditiouspairwisesequencealignment.Thetooloffersdiversesearchoptions,suchasBLASTN,BLASTP,BLASTX,andothers,andisequippedwiththeabilitytoperformalignmentsforbothnucleotideandproteinsequences.TheNationalCenterforBiotechnologyInformation(NCBI)BLASTplatform,accessibleathttps://blast.ncbi.nlm.nih.gov/,offersauser-friendlyinterfaceforconductingBLASTinquiries.EMBOSSNeedle:NeedleisatoolforpairwisesequencealignmentthatismadeavailablethroughtheEMBOSS(EuropeanMolecularBiologyOpenSoftwareSuite)package.TheNeedleman-Wunschalgorithmisutilizedforconductingglobalalignment,andthetoolisaccessibleasastandalonecommand-lineapplicationorviamultipleonlineinterfaces.EMBOSSWater:TheEMBOSSpackageoffersapairwisealignmenttoolcalledWater,whichutilizestheSmith-Watermanalgorithmtoconductlocalsequencealignment.Thetoolinquestioniscapableofidentifyinglocalsimilarityregionsbetweensequencesandisaccessiblethroughbothstandalonesoftwareandonlineinterfaces.MultipleSequenceAlignmentTools:ClustalWandClustalOmega:ClustalWanditssuccessor,ClustalOmega,arecommonlyemployedprogressivealgorithmsformultiplesequencealignment.Theprogressivealignmentapproachisutilizedbythemandtheyareaccessibleintheformofstandaloneprograms,webservers,andcommand-linetools.TheClustalOmegasoftwareisrecognizedforits

capacitytoeffectivelymanageextensivesequencealignmentsanditsscalability.MAFFT(MultipleAlignmentusingFastFourierTransform):TheMAFFTtoolisaniterativeapproachtomultiplesequencealignmentthatemploysavarietyofalgorithms,suchasFFT,toachievepreciseandrapidalignments.Thesoftwarepresentsalternativesforthealignmentofnucleotideandproteinsequencesandproposesdiversetactics,includingtheL-INS-i,G-INS-i,andE-INS-iapproaches,tosuitdifferentalignmentcircumstances.MUSCLE(MultipleSequenceComparisonbyLog-Expectation):MUSCLE,whichstandsforMultipleSequenceComparisonbyLog-Expectation,isacomputationaltoolusedforaligningmultiplebiologicalsequences.MUSCLEisafrequentlyemployedsoftwareapplicationforconductingmultiplesequencealignment.Theemployedalgorithmisbothrapidandeffectiveinproducingprecisealignments.TheMUSCLEalgorithmiscapableofprocessingalignmentsonalargescaleandprovidesuserswithvariousoptionstoenhancealignmentrefinementandaccuracy.T-Coffee:T-Coffeeisaflexibletoolforaligningmultiplesequences,whichutilizesaguidetreetoconstructalignmentsbyintegratingdatafromvariousmethods.TheacronymT-CoffeestandsforTree-basedConsistencyObjectiveFunctionforalignmentEvaluation.Thesoftwareincorporatesmultiplealignmentalgorithmstogenerateprecisealignmentsandofferssupplementaryfunctionalities,suchaspredictionsofsecondarystructuresandfunctionaldomains.