Ncct and cect brain and orbit

6,907 views 117 slides May 25, 2019
Slide 1
Slide 1 of 117
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117

About This Presentation

it includes the detail about anatomy and procedure of CT examination of head/brain and orbit
for original ppt u can contact [email protected]


Slide Content

NCCT AND CECT BRAIN AND ORBIT Suman Duwal B.Sc MIT NAMS, BIR HOSPITAL

contents Anatomy Indications Patient preparation Contraindication Protocol Department protocol Radiation dose

anatomy CRANIUM NEUROCRANIUM VISCEROCRANIUM Includes cranial bones Includes facial bones

neurocranium Frontal bone Parietal bone Occipital bone Temporal bone Sphenoid bone Ethmoid bone

F R O N T A L

Sagittal suture Superior view

P A R I E T A L Coronal suture Squamous suture Lamboidal suture

O C C I P I T A L

T E M P O R A L

S P H E N O I D

E T H M O I D

Fontanelles in neonate brain

Content of the cranium?

Fig: embryonic development of human brain

Fig : different parts of brain

Fig: different lobes of the brain

Fig: meninges of the brain

Fig: gyrus and sulcus

Fig: sagittal section of the brain

Fig:sagittal section of the brain

Fig: basal ganglia

Fig: brain stem

Fig: ventricles in the brain

Fig: CSF circulation

Cisterns

Fig: blood supply to the brain

Fig: venous drainage of the brain

Name Drains to Anterior Sphenoparietal sinuses Cavernous sinuses Cavernous sinuses Superior and inferior petrosal sinuses Midline Superior sagittal sinus Typically becomes right transverse sinus or confluence of sinuses Inferior sagittal sinus Straight sinus Straight sinus Typically becomes left transverse sinus or confluence of sinuses Posterior Occipital sinus Confluence of sinuses Confluence of sinuses Right and Left transverse sinuses Lateral Superior petrosal sinus Transverse sinuses Transverse sinuses Sigmoid sinus Inferior petrosal sinus Internal jugular vein Sigmoid sinuses Internal jugular vein

Fig: just above the foramen magnum

Fig: at the level of fourth ventricle

Fig: at the level of third ventricle

Fig: at mid ventricular level

Fig: above the ventricular level

Indication NCCT Suspected intra-cranial hemorrhage Hydrocephalus Evaluation of ICSOL Head trauma ( i.e RTA, fall injury) ) Alteration of mental status (Evaluating psychiatric disorders) Suspected mass or tumor Increased intracranial pressure Immediate postoperative evaluation following brain surgery

Patient preparation History of the patient should be taken along with the reports of previous investigations Radiopaque material should be removed from the FOV Proper information and instruction should be given to the patient about the procedure Uncooperative patient should be sedated

Department protocol(128 slice CT philips ingenuity) Patient positioning Supine with head first arms beside the trunk Scanogram/topogram lateral Mode of scanning Helical Landmark Base of the skull to the vertex Scan orientation Caudo-cranial Gantry tilt As required, to make scan plane parallel to the canthomeatal line FOV Skull including the soft tissue Slice thickness 5mm Slice interval 5mm Recon algorithm Medium smooth for brain and sharp kernel for bone pitch 1 Gantry rotation time 0.4sec Iterative dose reconstruction i DOSE level 3

Scan parameters for scanogram KV 120 MA 30 LENGTH 250mm Scan parameters for helical scan KV 120 MA 350-450 SCAN TIME 11-13sec window level and window width Soft tissue 360ww/60wl Bone 2000ww/800wl Brain parenchyma 80ww/40wl

Cect (contrast enhanced computed tomography) Suspected mass or tumor Aneurysm evaluation Fluid collection such as abscess Ischemic process such as stroke Cerebro-vascular stroke Not done in case of acute trauma/hemorrhage

Contraindication Hypersensitivity Renal impairment serum creatinine level- 0.7-1.4 mg/dL serum urea level-   7 to 20 mg/dL  eGFR should be more than 30 ml/min/1.73m ²  

Patient preparation NPO 4-5 hours prior to the procedure Serum creatinine and urea report should be normal Informed consent should be signed from patient or his/her close relative In case of diabetic patient metformin should be stopped (24-48) hours prior to the study and (24-48) hours after the study

13 hours prior to procedure, and 7 hours prior to procedure: Prednisone 50 mg PO or Hydrocortisone 50 mg IV In addition give, 1 hour prior to procedure: Prednisone 50 mg PO or Hydrocortisone 50 mg IV and Diphenhydramine 50 mg PO or 25 mg IV history of severe reaction or anaphylaxis reaction

PROTOCOL FOR CECT BRAIN Contrast LOCM,IOCM Administration route Intravenous(IV) Volume of contrast 50 to 80ml Rate of injection 3ml/sec( hand injection) Delay No delay Slice thickness 5mm Slice interval 5mm Dual phase Arterial phase,venous phase

GANTRY ANGULATION AND RADIATION DOSE TO THE LENS Radiation dose reduction to the lens from 75% to 90% has been reported follow the gantry angulation during CT brain

In recent practice instead of the gantry angulation, chin is depressed so as to make the glabellomeatal line parallel to the scan plane which reduces the unnecessary irradiation to the lens.

Ct for sellar and parasellar region Indications Hypophyseal pathologies Sellar abnormalities Cavernous sinus thrombosis Caroticocavernous fistula Tumors Trauma

protocol Patient positioning Supine with head first arms beside the trunk Scanogram/topogram AP/lateral Mode of scanning Helical Landmark Posterior to anterior from level of clivus to the level of sphenoidale(coronal) Scan orientation Caudo-cranial Gantry tilt As required, to make scan plane parallel to floor of the sella FOV Region of interest Slice thickness 2-3mm Slice interval 1-1.5mm Recon algorithm Medium smooth for sellar and parasellar soft tissues and sharp kernel for bone Contrast 50ml IV at 3 to 4ml/s 3D Recon MPR/MIP

comments For cavernous sinuses , FOV should be increased anteriorly to include the spheno -parietal sinus and the extra orbital part of the superior ophthalmic vein and posteriorly to include the superior and inferior petrosal sinus.(coronal scan)

Radiation dose in CT head NCCT HEAD:- approx. 2mSv CECT HEAD:- approx. 4 mSv

HEMORRHAGE Extra-axial hemorrhage Intra-axial hemorrhage Epidural(EDH) Subdural(SDH) Subarachnoid(SAH) Intraventricular(IVH) Intracerebral Basal ganglia hemorrhage Pontine hemorrhage Cerebellar hemorrhage Lobar hemorrhage

How the different types of hemorrhage are seen on CT?

EPIDURAL/EXTRADURAL Lens shaped Commonly results from injury to the middle meningeal artery. Result of countercup injuries Between duramater and endosteum of the skull

SUBDURAL Crescent shaped Caused due to the rupture of bridging veins Result of countercup injuries Between dura and arachnoid

SUB ARACHNOID Berry aneurysm Results of ruptured aneurysm,AVM and head injury

INTRAVENTRICULAR Common in premature infants but less common in adults Results from breakage bleeding from a hypertensive basal ganglia hemorrhage, brain contusion

INTRA-CEREBRAL  third most common cause of stroke, after embolic and atherosclerotic thrombosis. Hypertension trauma hemorrhagic infarction septic embolism

INTRA CEREBELLAR   poorly controlled hypertension secondary to an underlying lesion (e.g. tumor or vascular malformation)

ORBIT

How the orbit is formed ? and its landmarks

Fig: frontal bone

Fig: orbital surface of the frontal bone

Fig: lesser wing of sphenoid bone

Fig: zygomatic process of frontal bone

Fig: greater wing of the sphenoid bone

Fig: orbital plate of ethmoidal bone

Fig: lacrimal bone

Fig: frontal process of maxilla

Fig: zygomatic bone

Fig: orbital surface of zygomatic bone

Fig: maxilla

Fig: orbital surface of maxilla

Fig: orbital process of palatine bone

What are the openings in the orbit and its content?

Fig: supra orbital foramen Contents Supra-orbital nerve

Fig: infra-orbital foramen Contents Infra orbital nerve passes

Fig: optic canal Contents: optic nerve ( cranial nerve II) the ophthalmic artery

Fig: superior orbital fissure Occulomotor , trochlear , abducens, ophthalmic nerve(lacrimal, frontal, naso cilliary branches) Opthamlic vein

Fig: inferior orbital fissure Contents infra-orbital artery and vein

Fig: anterior and posterior ethmoidal foramina Anterior: Anterior ethmoidal vein artery and nerve Posterior Posterior ethmoidal vein artery and nerve

Fig: infra-orbital groove Contents: infraorbital vessel and nerve

Entrance height 35 mm Entrance width 45 mm Medial wall length / depth 45 mm Volume 30 cc Distance from the back of the globe to the optic foramen 18 mm ADULT ORBITAL DIMENSIONS

What are the Content of the orbital CAVITY?

Lacrimal gland Eye Optic nerve Muscles of orbit

Lacrimal GLAND

Eye/globe

Optic nerve Starts froM 2 nd layer ( straitum opticum ) of retina which is highly nervous layer

Parts of Optic nerve Intraocular portion Intraorbital portion Intracanalicular portion Intracranial portion

Muscles of orbit There are two groups of eye muscles Extraocular muscles- that move the eyeball within the orbit Intraocular muscles- which are within the eyeball itself and control how the eyes accommodate Sphincter pupillae of iris Dialator pupillae of iris Cilliary muscle Muscles of eyelids Levator palpebrae superioris

Fig: levator palpebrae superioris

Fig: superior rectus muscle

Fig: inferior rectus muscle

Fig: medial rectus muscle

Fig: lateral rectus muscle

Fig: superior oblique muscle

Fig: inferior oblique muscle

Superior rectus Origin  - superior part of common tendinous ring (anulus of Zinn) Insertion  - anterior half of eyeball superiorly Innervation  - oculomotor nerve (CN III) Function  - elevation, adduction, internal rotation of eyeball Inferior rectus Origin  - inferior part of common tendinous ring (anulus of Zinn) Insertion  - anterior half of eyeball inferiorly Innervation  - oculomotor nerve (CN III) Function  - depression, adduction, external rotation of eyeball Medial rectus Origin  - medial part of common tendinous ring (anulus of Zinn) Insertion  - anterior half of eyeball medially Innervation  - oculomotor nerve (CN III) Function  - adduction of eyeball Lateral rectus Origin  - lateral part of common tendinous ring (anulus of Zinn) Insertion  - anterior half of eyeball laterally Innervation  - abducens nerve (CN VI) Function  - abduction of eyeball

Superior oblique Origin  - body of sphenoid bone Insertion  - superolateral aspect of eyeball (deep to rectus superior, via trochlea orbitae ) Innervation  - trochlear nerve (CN IV) Function  - depression, abduction, internal rotation of eyeball Inferior oblique Origin  - orbital surface of maxilla Insertion  - inferolateral aspect of eyeball (deep to lateral rectus muscle) Innervation  - oculomotor nerve (CN III) Function  - elevation, abduction, external rotation of eyeball Levator palpebrae superioris Origin  - lesser wing of sphenoid bone Insertion  - anterior surface of tarsus, skin of upper eyelid Innervation  - oculomotor nerve (CN III) Function  - elevation of upper eyelid

arterial supply of orbit It is supplied through the the ophthalmic artery and its branches. The main branches of ophthalmic artery are Central retinal artery:-it is the first and the smallest branch of ophthalmic artery which supplies to the inner retinal layers Lacrimal artery:- are the largest branches of ophthalmic artery and supply to the lacrimal glands eyelids and conjunctiva Posterior ciliary artery:- supplies to the posterior uveal tract , sclera and cornea Muscular branches:- can be divided into the superior and inferior branches which function is to supply the extraocular muscle

Venous drainage of orbit t

Indication for ncct and CECT Detection, exclusion and f/u of orbital space occupying lesion Tumors (retinoblastoma in children) Abscesses Inflammatory or infiltrative pathology Trauma and fracture Foreign bodies Proptosis Pathologies of lacrimal gland Cavernous sinus thrombosis Carotico - cavernous fistula

Patient positioning Supine with head first arms beside the trunk Scanogram/topogram lateral Mode of scanning Helical Starting location End location Just above the orbital plates Floor of the orbit Scan orientation Caudo-cranial Gantry tilt nill FOV Superior orbital margin to inferior orbital margin Slice thickness 2-3mm Slice interval 2-3mm Recon algorithm Medium smooth for soft tissues and sharp kernel for bone pitch 1 Gantry rotation time 0.4sec Iterative dose reconstruction i DOSE level 3 DEPARTMENT PROTOCOL FOR nCCT

Scan parameters for scanogram KV 120 MA 30 Scan parameters for helical scan KV 120 MA 250 SCAN TIME 8-10sec window level and window width Soft tissue 360ww/60wl Bone 2000ww/800wl

Radiation dose ORBIT AXIAL – 52 mGy ORBIT COR - 47 mGy In cases where the globes are located outside the FOV, the radiation doses received by the eye lenses could be reduced by a factor of 16, resulting in only 3.1-3.4 mGy for a complete axial scanning of the inner ear. Radiation doses to the eye lenses in computed tomography of the orbit and the petrous bone Neufang KF, et al. Eur J radiol . 1987 .

Why ct ? Urgency of imaging Need of the patient Claustrophobic Implanted pacemakers, ferromagnetic objects Weight limit for table/couch Clinical indications

refrences https://www.ajronline.org/doi/full/10.2214/AJR.09.3462 CT and MRI of the Whole Body John.R.Hagga sixth edition Computed Tomography for Technologists, Lois E. Romans Netter’s Concise Radiologic Anatomy, Edwae \ rd C. Weber Protocols for Multislice CT, R. Bruening Radiopaedia.com www.kenhub.com Slideshare.net Various internet sources.

THANK YOU Fig: skull of the owl monkey