Newton's Backward Interpolation Formula with Example

6,321 views 55 slides Jul 01, 2020
Slide 1
Slide 1 of 55
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55

About This Presentation

Newton's Backward Interpolation explained with example. History of interpolation along with it's advantages and disadvantages. Applications of interpolation in computer sciences.


Slide Content

Numerical Analysis Newton’s Backward Interpolation Formula Presented By: Muhammad Usman Ikram (F2018266065 )

What is Interpolation ? 2

Interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points.

Example Year (x) 1990 1995 2000 2005 2010 Sales (y) (in millions) 57 63 64 68 70 4

History 5

History 300 BC Babylonian astronomers used linear and higher-order interpolation to fill gaps in ephemerides of the sun, moon, and the then-known planets. 6

History 1000 A.D The Arabian scientist Al- Biruni writes his major work Al- Qanun'l - Mas'udi , in which he describes a method for second-order interpolation. 7

Types of Interpolation (For equally-spaced d ata) Newton Forward Interpolation Newton Backward Interpolation Stirling’s Interpolation Gauss’s Forward Interpolation Formula Gauss’s Backward Interpolation Formula 8

Newton’s Backward Interpolation 9

The Backward Difference Table 10 x y y x y

The Backward Difference Table 11 x y y x y

The Backward Difference Table 12 x y y x y

The Backward Difference Table 13 x y y x y =  

The Backward Difference Table 14 x y y x y =   =  

The Backward Difference Table 15 x y y x y =   =   =  

The Backward Difference Table 16 x y y x y =   =   =   =  

The Backward Difference Table 17 x y y x y =   =   =   =  

The Backward Difference Table 18 x y y x y =   =   =   =  

The Backward Difference Table 19 x y y x y =   =   =   =  

The Backward Difference Table 20 x y y x y =   =   =   =    

The Backward Difference Table 21 x y y x y =   =   =   =      

The Backward Difference Table 22 x y y x y =   =   =   =      

The Backward Difference Table 23 x y y x y =   =   =   =      

Newton Backward Interpolation Formula 24 f(x) = + P + + + + + _ _ _ _ _ _ _ _ _ _ _ Where   = last value in column x = last value in column y   = difference b/w values of x =  

Example Question 25

Question x 20 25 30 35 40 45 F(x) 354 332 291 260 231 204 26 Estimate f(42) for the following data

Step 1 27 x y y 20 25 30 35 40 45 x y 20 25 30 35 40 45

Step 1 28 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204

Step 1 29 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204  

Step 1 30 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204    

Step 1 31 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204      

Step 1 32 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204        

Step 1 33 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204          

Step 1 34 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204          

Step 1 35 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204          

Step 1 36 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204          

Step 1 37 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204          

Step 1 38 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204            

Step 1 39 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204              

Step 1 40 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204                

Step 1 41 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204                

Step 1 42 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204                

Step 1 43 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204                  

Step 1 44 x y y 20 354 25 332 30 291 35 260 40 231 45 204 x y 20 354 25 332 30 291 35 260 40 231 45 204                  

Step 2 45 x= 42 h= 5 = 45 = 204   = = = = - 0.6  

Formula 46 f(x) = + P + + + +  

Putting Values in Formula 47 f(42) = + (-0.6)(-27) + (2)+ (0) + (8) + (45) = f(42 ) = 216.68  

Advantages and Disadvantages 48

Advantages Helpful in estimation between given set of data. Simple and intuitive. Quick and easy. Helpful in images enhancing (image resizing) Helpful in Digital Signal Processing. 49

Disadvantages 50 Not always precise. Sometimes due to the fault in program used, image after resizing are blurry.

Applications in Computer Sciences 51

Applications in Computer Sciences Digital Image Processing Image interpolation works in two directions, and tries to achieve a best approximation of a pixel's intensity based on the values at surrounding pixels. 52 Original Image Enlarging Image to 183 % With Interpolation Without Interpolation

Applications in Computer Sciences Game Development and Graphics Linear interpolation (commonly known as 'lerp') is a really handy function for creative coding, game development and generative art . It ensures the smooth movement of objects in games. 53

Sources Cited Interpolation - https://en.wikipedia.org/wiki/Interpolation A Chronology of Interpolation: From Ancient Astronomy to Modern Signal and Image Processing - http:// bigwww.epfl.ch/publications/meijering0201.pdf Resizing Images - https://sisu.ut.ee/imageprocessing/book/3 Digital Image Interpolation - https :// www.cambridgeincolour.com/tutorials/image-interpolation.htm A Brief Introduction to Lerp - https:// www.gamedev.net/tutorials/programming/general-and-gameplay-programming/a-brief-introduction-to-lerp-r4954 Linear interpolation - https:// en.wikipedia.org/wiki/Linear_interpolation 54

55 JazakAllah