Interpolation Let the function y=f(x) take the values y , y 1 ,y 2 ,…,y n corresponding to the values x ,x 1 ,x 2 ,…,x n of x. The process of finding the value of y corresponding to any value of x=x i between x and x n is called interpolation.
Newton’s Forward Interpolation Let the function y=f(x) take the values y0,y1,y2,…,yn corresponding to the values x0,x1,x2,…,xn of x. Suppose it is required to evaluate f(x) for x=x0 + rh , where r is any real number. Formula : Yn (x) = where r =
Newton’s Forward Interpolation x y D y D 2 y D 3 y D 4 y D 5 y x y D y = y 1 - y x 1 y 1 D 2 y = D y 1 - D y D y 1 = y 2 - y 1 D 3 y = D 2 y 1 - D 2 y x 2 y 2 D 2 y 1 = D y 2 - D y 1 D 4 y = D 3 y 1 - D 3 y D y 2 = y 3 - y 2 D 3 y 1 = D 2 y 2 - D 2 y 1 D 5 y = D 4 y 1 - D 4 y x 3 y 3 D 2 y 2 = D y 3 - D y 2 D 4 y 1 = D 3 y 2 - D 3 y 1 D y 3 = y 4 - y 3 D 3 y 2 = D 2 y 3 - D 2 y 2 x 4 y 4 D 2 y 3 = D y 4 - D y 3 D y 4 = y 5 - y 4 x 5 y 5
Example: If f(x) is known at the following data points then find f(0.5) using Newton's forward difference formula. x i 1 2 3 4 f i 1 7 23 55 109 x f i D f i D 2 f i D 3 f i D 4 f i 1 6 1 7 10 16 6 2 23 16 32 6 3 55 22 54 4 109
Newton’s Backword Interpolation Let the function y=f(x) take the values y0,y1,y2,…,yn corresponding to the values x0,x1,x2,…,x n of x. Suppose it is required to evaluate f(x) for x=x0 + r*h , where r is any real number. Formula : yn(x) = y n where r =
Example: Consider Following Tabular Values Determine y (300 ). X 50 100 150 200 250 y 618 724 805 906 1032 x y y 2 y 3 y 4 y 50 618 106 100 724 -25 81 45 150 805 20 -40 101 5 200 906 25 126 250 1032 x y 50 618 106 100 724 -25 81 45 150 805 20 -40 101 5 200 906 25 126 250 1032