Noise Models

67,924 views 43 slides Nov 23, 2014
Slide 1
Slide 1 of 43
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43

About This Presentation

Noise Models


Slide Content

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 1
Digital Image Processing Image Restoration
Noise models and additive noise removal

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 2
Image Restoration

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 3
Image Restoration
What is noise (in the context of image processing) and how can it
be modeled?
What are the main types of noise that may affect an image?
What are the possible solutions?
Subjective VsObjective (Enhancement VsRestoration)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 4
Degradation Model for a Digital Image

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 5
Noise Models

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 6
Noise and Noise Models
Gaussian (normal)
Impulse (salt-and-pepper)
Uniform
Rayleigh
Gamma (Erlang)
Exponential

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 7
Effect of Noise on Images & Histograms
Gaussian
Exponential
Impulse
(salt-and-pepper)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 8
Effect of Noise on Images & Histograms
Rayleigh
Gamma (Erlang)
Uniform

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 9
Noise Models: Gaussian Noise

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 10
Noise Models: Rayleigh Noise

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 11
Noise Models: Erlang (Gamma) Noise

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 12
Noise Models: Exponential Noise
Where

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 13
Noise Models: Uniform Noise
The mean and variance are
given by











 
otherwise 0
if ,
1
)(
bz a
ab zp
12
) (
,
2
2
2
ab ba



 

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 14
Noise Models: Impulse (Salt and Pepper) Noise

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 15
Effect of Noise on Images & Histograms

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 16
Effect of Noise on Images & Histograms

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 17
Effect of Noise on Images & Histograms

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 18
Periodic Noise (Example)
Spatially Dependent Case

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 19
Applicability of various noise models

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 20
Estimation of noise parameters

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 21
Estimation of noise parameters (example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 22
Estimation of noise parameters (example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 23
Estimation of noise parameters

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 24
Restoration of noise-only degradation
Filters to be considered

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 25
Mean Filters: Arithmetic mean filter
Causes a certain amount of blurring (proportional to the window size) to
the image, thereby reducing the effects of noise.
Can be used to reduce noise of different types, but works best for Gaussian,
uniform, or Erlang noise.

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 26
Mean Filters: Geometric mean filter
–A variation of the arithmetic mean filter
–Primarily used on images with Gaussian noise
–Retains image detail better than the arithmetic mean

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 27
Mean Filters: Harmonic mean filter
–Another variation of the arithmetic mean filter
–Useful for images with Gaussian or salt noise
–Black pixels (pepper noise) are not filtered
Harmonic mean filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 28
Arithmetic and geometric mean filters (example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 29
Mean Filters: Harmonic mean filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 30
Mean Filters: Harmonic mean filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 31
Mean Filters: Contra-harmonic mean filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 32
Classification of contra-harmonic filter applications

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 33
Contra-harmonic mean filter (example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 34
Contra-harmonic mean filter (example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 35
Rank / Order / Order Statistics Filters
– Known as Rank filters, Order filtersOR Order Statistics filters
– Operate on a neighborhood around a reference pixel by
ordering (ranking) the pixel values and then performing an
operationon those ordered values to obtain the new value for
the reference pixel
– They perform very well in the presence of salt and pepper noise
but are more computationally expensiveas compared to mean
filters

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 36
Rank / Order Statistics Filters: Median filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 37
Rank / Order Statistics Filters: Median filter
–Most popular and useful of the rank filters.
–It works by selecting the middle pixel value from the ordered set
of values within the m ×n neighborhood (W) around the
reference pixel.
• If mnis an even number, the arithmetic average of the two
values closest to the middle of the ordered set is used
instead.
–Many variants, extensions, and optimized implementations in
the literature.

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 38
Median filter (Example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 39
Rank / Order Statistics Filters: Max and Min filter

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 40
Rank / Order Statistics Filters: Max and Min filter
–Max filter also known as 100
th
percentile filter
–Min filteralso known as zeroth percentile filter
–Maxfilter helps in removing pepper noise
–Minfilter helps in removing salt noise

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 41
Max and Min filter (Example)

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 42
Rank / Order Statistics Filters: Midpoint filter
–Calculates the average of the highest and lowest pixel values
within a window
–What would it do with salt and pepper noise ?

5/15/2013 COMSATS Institute of Information Technology, Abbottabad Digital Image Processing CSC330 43
Midpoint filter (Example)