NUMERICAL ANALYSIS: APPROXIMATION, ERRORS & OPERATORS
Numerical Analysis || Lecture Notes || Anup Kumar Giri 10
BACKWARD DIFFERENCE TABLE
Backward differences can be represented in a tabular form, called the backward difference or horizontal difference table.
� �=??????(�) ??????� ??????
�
� ??????
�
�
�
0 �
0=�(�
0)
�
1=�
0+ℎ �
1=�(�
1) ∇�
1=�
1−�
0
�
2=�
0+2ℎ �
2=�(�
2) ∇�
2=�
2−�
1 ∇
2
�
2=∇�
2−∇�
1
�
3=�
0+3ℎ �
3=�(�
3) ∇�
3=�
3−�
2 ∇
2
�
3=∇�
3−∇�
2 ∇
3
�
3=∇
2
�
3−∇
2
�
2
It is observed from the forward and backward difference tables that for a given table of values both the tables are same.
Practically, there are no differences among the values of the tables, but theoretically they have separate significant.
SHIFTING OPERATOR (�)
Let us consider the functional values or entries �
??????=�(�
??????),??????=0,1,2,⋯,� be given for (�+1) equidistant arguments
�
??????=�
0+??????ℎ,??????=0,1,2,⋯,�, where ℎ being the interval of differencing or spacing.
The shifting operator is denoted by � and is defined as
��(�)=�(�+ℎ)
When �=�
??????, ��(�
??????)=�(�
??????+ℎ) or, �(�
??????)=�
??????+1 ; ??????=0,1,2,⋯,(�−1).
Now, �
2
�(�)=�{��(�)}=�{�(�+ℎ)}=�(�+2ℎ) or, �
2
(�
??????)=�
??????+2 ; ??????=0,1,2,⋯,(�−2).
In general,
�
??????
�(�)=�
??????−1
[��(�)]=�
??????−1
[�(�+ℎ)]=⋯=�
??????−??????
[�(�+??????ℎ)]=⋯=��[�+(??????−1)ℎ]=�(�+??????ℎ)
i.e., �
??????
(�
??????)=�
??????+?????? ; ??????=0,1,2,⋯,(�−??????); ??????=1,2,⋯,�.
We may write �
�
�(�)=�(�+�ℎ) or, �
�
(�
0)=�
�.
The inverse shifting operator denoted by �
−1
and is defined as
�
−1
�(�)=�(�−ℎ).
When �=�
??????, �
−1
�(�
??????)=�(�
??????−ℎ) or, �
−1
(�
??????)=�
??????−1 ; ??????=�,( �−1),⋯,3,2,1.
Now, �
−2
�(�)=�
−1
{�
−1
�(�)}=�
−1
{�(�−ℎ)}=�(�−2ℎ) or, �
−2
(�
??????)=�
??????−2 ; ??????=�,( �−1),⋯,3,2.
In general,
�
−??????
�(�)=�
−(??????−1)
[�(�−ℎ)]=⋯=�
−(??????−??????)
[�(�−??????ℎ)]=⋯=�
−1
�{�−(??????−1)ℎ}=�(�−??????ℎ)
i.e., �
−??????
(�
??????)=�
??????−?????? ; ??????=�,( �−1),⋯,(??????+1),?????? ; ??????=1,2,⋯,�.
We may write �
−�
�(�)=�(�−�ℎ) or, �
−�
(�
�)=�
0.