Números Reales Estudiante: Zadquiel Lezama 31.663.158 Prof: Wilmar marrufo Republica bolivariana de Venezuela Ministerio del poder popular para la educación Universidad politécnica territorial Andrés Eloy blanco Barqto-edo-lara
¿Qué son los conjuntos? Un conjunto es la agrupación de diferentes elementos que comparten entre sí características y propiedades semejantes. Estos elementos pueden ser sujetos u objetos, tales como números, canciones, meses, personas, etc. Por ejemplo: el conjunto de números primos o el conjunto de planetas del sistema solar . A su vez, un conjunto puede convertirse también en un elemento. Por ejemplo: en el caso de un ramo de flores, en principio una flor sería el primer elemento, pero al conjunto de flores se lo puede considerar luego como un ramo de flores, convirtiéndose así, en un nuevo elemento . Un ejemplo sencillo es un conjunto de enteros positivos hasta el 5, que tiene el siguiente aspecto: {1, 2, 3, 4, 5}.
Operaciones con Conjuntos Operaciones con conjuntos. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento . Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn , para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión.
Operaciones con Conjuntos Unión o reunión de conjuntos. Ejemplo 1 Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
Operaciones con Conjuntos Intersección de conjuntos . Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩ . Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
Operaciones con Conjuntos Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
Operaciones con Conjuntos Diferencia de simétrica de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Operaciones con Conjuntos Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el el conjunto A es el conjunto del cual se hace la operación de complemento . Ejemplo 1. Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
Números Reales Cuando se definen los números reales se dice que son cualquier número que se encuentre o corresponda con la recta real que incluye a los números racionales y números irracionales, Por lo tanto, el dominio de los números reales se encuentra entre menos infinito y más infinito. Las principales características de los números reales son : Orden. Todos los números reales siguen un orden, por ejemplo 1, 2, 3, 4 … Integral. La integridad de los números reales marca que no hay espacios vacíos, es decir, cada conjunto que dispone de un límite superior tiene un límite más pequeño. Infinitos. Los números reales no tienen final, ni por el lado positivo ni por el lado negativo. Por eso su dominio está entre menos infinito y más infinito. Decimal. Los números reales pueden ser expresados como una expansión decimal infinita.
Números Reales La clasificación de los números reales incluye los siguientes números. Números naturales. Son los números iguales o mayores que uno no decimales. El conjunto de los números naturales no tiene en cuenta el cero. Números enteros. Son los números positivos y negativos no decimales, incluyendo el cero. Es decir, los números naturales incluyendo los números negativos y el cero. Números racionales. Los que se pueden representar como el cociente de dos enteros con denominador diferente a cero. Son las fracciones que pueden crearse utilizando números naturales y enteros. Números irracionales. Aquellos que no pueden ser expresados como una fracción de números enteros con denominador distinto a cero. Se trata de números decimales que no pueden expresarse ni de manera exacta, ni de manera periódica, siendo el número pi un ejemplo de este tipo de números.
Desigualdades La desigualdad matemática es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor, menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones matemáticas diferente según su naturaleza . Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos sujetos matemáticos expresan valores diferentes.
Desigualdades Signos de desigualdad matemática Podemos sintetizar los signos de expresión de todas las desigualdades matemáticas posibles en los cinco siguientes: Desigual a: ≠ Menor que: < Menor o igual que: ≤ Mayor que: > Mayor o igual que: ≥ Cada una de ellas debe relacionar dos elementos matemáticos. De modo que implicaría que a es menor a b, mientras que “a>b” significa que a es mayor a b. En el caso de “ a≠b ”, leeremos la expresión como a es desigual a b, “ a≤b ”; a es menor o igual a b, y “ a≥b ” implica que a es mayor o igual a b. Es también importante conocer que la expresión de desigualdad matemática “ a≠b ” no es excluyente con las expresiones “a” y “a>b”, de modo que, por ejemplo, “ a≠b ” y “a>b” pueden ser ciertas al mismo tiempo. Por otro lado, tampoco son excluyentes entre sí las expresiones “ a≥b ” y “a>b” o “ a≤b ” y “a”.
Desigualdades Ejemplos Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la derecha. Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o superior a 3 (x≥3).
Valor Absoluto ¿Qué es? La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. Tomemos el caso del valor absoluto 5. Este es el valor absoluto tanto de +5 (5 positivo) como de -5 (5 negativo). El valor absoluto, en definitiva, es el mismo en el número positivo y en el número negativo: en este caso, 5. Cabe destacar que el valor absoluto se escribe entre dos barras verticales paralelas; por lo tanto, la notación correcta es |5|.
Valor Absoluto La definición del concepto indica que el valor absoluto siempre es igual o mayor que 0 y nunca es negativo. Por lo dicho anteriormente, podemos agregar que el valor absoluto de los números opuestos es el mismo; 8 y -8, de este modo, comparten el mismo valor absoluto: |8 |. También se puede entender el valor absoluto como la distancia que existe entre el número y 0. El número 563 y el número -563 están, en una recta numérica, a la misma distancia del 0. Ese, por lo tanto, es el valor absoluto de ambos: |563 |. La distancia que existe entre dos números reales, por otra parte, es el valor absoluto de su diferencia. Entre 8 y 5, por ejemplo, hay una distancia de 3. Esta diferencia tiene un valor absoluto de |3|.
Desigualdades con Valor Absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro . La desigualdad |x| < 3 significa que la distancia entre x y 0 es menor que 4 Asi , x > -3 y x < 3. El conjunto solución es {x | -3 < x < 3, x Є R} Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar . Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva . Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa . La solución es la intersección de las soluciones de estos dos casos . En otras palabras, para cualesquiera números reales a y b, si |a| < b, entonces a < b y a > - b.