Optical Instrumentation 10. Light Emitting Diode

ErFarukBinPoyen 852 views 33 slides Nov 29, 2018
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

This article gives a vivid description of the principle and working procedure of a Light Emitting Diode. It provides a comprehensive understanding of how this very important optical device is useful in our daily applications, its types, structure and other related information.


Slide Content

OPTOMETRY –Part X
LIGHT EMITTING DIODE
ER.FARUKBINPOYEN
DEPT.OFAEIE,UIT,BU,BURDWAN,WB,INDIA
FARUK.POYEN@GMAIL .COM

Contents:
1.BasicTheory
2.LightGenerationProcess
3.TypesofRecombinationofCarriers
4.DirectRecombination
5.IndirectRecombination
6.LightExtractionProcess
7.LEDStructure
8.LEDDeviceStructure
9.LEDMaterial
10.LEDEfficiency
11.AdvantagesofLED
12.DisadvantagesofLED
13.ApplicationsofLED
2

Basic Theory:
ALightemittingdiode(LED)isessentiallyapnjunctiondiode.
Whencarriersareinjectedacrossaforward-biasedjunction,itemitsincoherentlight.
MostofthecommercialLEDsarerealizedusingahighlydopednandapJunction.
3

Theory:
Tounderstandtheprinciple,letusconsideranunbiasedpn+junction(Figureinthenext
slideshowsthepn+energybanddiagram).
Thedepletionregionextendsmainlyintothep-side.
Thereisapotentialbarrierfrom�
??????onthen-sidetothe�
??????onthep-side,calledthe
built-involtage,??????
0.
Thispotentialbarrierpreventstheexcessfreeelectronsonthen+sidefromdiffusing
intothepside.
WhenaVoltageVisappliedacrossthejunction,thebuilt-inpotentialisreducedfrom
??????
0to??????
0–V.
Thisallowstheelectronsfromthen+sidetogetinjectedintothep-side.Sinceelectrons
aretheminoritycarriersinthep-side,thisprocessiscalledminoritycarrierinjection.
Buttheholeinjectionfromthepsideton+sideisverylessandsothecurrentis
primarilyduetotheflowofelectronsintothep-side.
4

Theory:
Theseelectronsinjectedintothep-siderecombinewiththeholes.
Thisrecombinationresultsinspontaneousemissionofphotons(light).
Thiseffectiscalledinjectionelectroluminescence.
Thesephotonsshouldbeallowedtoescapefromthedevicewithoutbeingreabsorbed.
Recombinationofanelectronholepair(EHP)involveselectronintheconductionband
occupyingaholeinthevalenceband.
Thisresultsintheannihilationoftheelectron-holepair.
5

Light Generation Process:
Whenap-njunctionisbiasedintheforwarddirection,theresultingcurrentflow
acrosstheboundarylayerbetweenthepandnregionshastwocomponents:holesare
injectedfromthepregionintothenregionandelectronsareinjectedfromthenregion
intothepregion.
Thisso-calledminority-carrierinjectiondisturbsthecarrierdistributionfromits
equilibriumcondition.
Theinjectedminoritycarriersrecombinewithmajoritycarriersuntilthermal
equilibriumisreestablished.
Aslongasthecurrentcontinuestoflow,minoritycarrierinjectioncontinues.
Onbothsidesofthejunction,anewsteady-statecarrierdistributionisestablishedsuch
thattherecombinationrateequalstheinjectionrate.
6

Light Generation Process:
Minority-carrierrecombinationisnotinstantaneous.
Theinjectedminoritycarriershavetofindproperconditionsbeforetherecombination
processcantakeplace.
Bothenergyandmomentumconservationhavetobemet.
Energyconservationcanbereadilymetsinceaphotoncantakeuptheenergyofthe
electron-holepair,butthephotondoesnotcontributemuchtotheconservationof
momentum.
Therefore,anelectroncanonlycombinewithaholeofpracticallyidenticaland
oppositemomentum.
Suchproperconditionsarenotreadilymet,resultinginadelay.Inotherwords,the
injectedminoritycarrierhasafinitelifetimeτrbeforeitcombinesradiativelythrough
theemissionofaphoton.
7

Light Generation Process:
Thisaveragetimetorecombineradiativelythroughtheemissionoflightcanbe
visualizedastheaveragetimeittakesaninjectedminoritycarriertofindamajority
carrierwiththerightmomentumtoallowradiativerecombinationwithoutviolating
momentumconservation.
Unfortunately,radiativerecombinationisnottheonlyrecombinationpath.
Therearealsocrystallinedefects,suchasimpurities,dislocations,surfacesetc.thatcan
traptheinjectedminoritycarriers.
Thistypeofrecombinationprocessmayormaynotgeneratelight.
Energyandmomentumconservationaremetthroughthesuccessiveemissionof
phonons.
Again,therecombinationprocessisnotinstantaneousbecausetheminoritycarrierfirst
hastodiffusetoarecombinationsite.
Thisnonradiativerecombinationprocessischaracterizedbyalifetimeτ
n.
8

Light Generation Process:
Itisthereforeimportanttodevelopconditionswhereradiativerecombinationoccurs
fairlyrapidlycomparedwithnonradiativerecombination.
Theeffectivenessofthelight–generationprocessisdescribedbythefractionofthe
injectedminoritycarriersthatrecombineradiativelycomparedtothetotalinjection.
Theinternalquantumefficiency,η
icanbecalculatedfromτ
randτ
n.
Thecombinedrecombinationprocessesleadtoatotalminority–carrierlifetimeτgiven
by
1
??????
=
1
??????
??????
+
1
??????
�
η
iissimplycomputedasafractionofcarriersrecombiningradiatively.
�
??????
=
??????
�
??????
??????+??????
�
9

Types of Recombination of carriers:
Therecombinationcanbeclassifiedintothefollowingtwokinds
1.•Directrecombination
2.•Indirectrecombination
10

Direct Recombination:
Indirectbandgapmaterials,theminimumenergyoftheconductionbandliesdirectly
abovethemaximumenergyofthevalencebandinmomentumspaceenergy(Figure2
showstheE-kplotofadirectbandgapmaterial).
Inthismaterial,freeelectronsatthebottomoftheconductionbandcanrecombine
directlywithfreeholesatthetopofthevalenceband,asthemomentumofthetwo
particlesisthesame.
Thistransitionfromconductionbandtovalencebandinvolvesphotonemission(takes
careoftheprincipleofenergyconservation).
Thisisknownasdirectrecombination.Directrecombinationoccursspontaneously.
GaAsisanexampleofadirectband-gapmaterial.
11

Direct Recombination:
Energy-kplot:E-kplotisadifferentwayofdescribingthematerialcharacteristics.
Theeffectsofthecrystallatticeareincludedbydefiningeffectivemassm*.
Fromtheplottheeffectivemasscanbecalculated
�

= Ђ
2
�
2
���
2
whereЂisthePlank’sconstant(h/2π)andd
2
E/dk
2
givesthecurvature.
12

Direct Recombination:
Theeffectivemasscanbepositive,negativeorinfinity.
Infinitymeansparticlecannotbeacceleratedbyexternalforces
Negativemeanstheobjectreactstoanattractiveforceasifitwouldexperiencea
repulsiveforce.
13

Indirect Recombination:
Intheindirectbandgapmaterials,theminimumenergyintheconductionbandis
shiftedbyak-vectorrelativetothevalenceband.
Thek-vectordifferencerepresentsadifferenceinmomentum.
Duetothisdifferenceinmomentum,theprobabilityofdirectelectronhole
recombinationisless.
Inthesematerials,additionaldopants(impurities)areaddedwhichformveryshallow
donorstates.
Thesedonorstatescapturethefreeelectronslocally;providesthenecessarymomentum
shiftforrecombination.
Thesedonorstatesserveastherecombinationcentres.
ThisiscalledIndirect(non-radiative)Recombination.
14

Indirect Recombination:
Figure3showstheE-kplotofanindirectbandgapmaterialandanexampleofhow
NitrogenservesasarecombinationcenterinGaAsP.
Inthiscaseitcreatesadonorstate,whenSiCisdopedwithAl,itrecombinationtakes
placethroughanacceptorlevel.
Theindirectrecombinationshouldsatisfybothconservationenergy,andmomentum.
Thusbesidesaphotonemission,phononemissionorabsorptionhastotakeplace.
15

Indirect Recombination:
Phonons:Phononsareaquantummechanicalversionofaspecialtypeofvibrational
motion,knownasnormalmodesinclassicalmechanics,inwhicheachpartofalattice
oscillateswiththesamefrequency.
Thesenormalmodesareimportantbecauseanyarbitraryvibrationalmotionofalattice
canbeconsideredasasuperpositionofnormalmodeswithvariousfrequencies
accordingtoclassicalmechanics.
Inthissense,thenormalmodesaretheelementaryvibrationsofthelattice.
Althoughnormalmodesarewave-likephenomenainclassicalmechanics,theyacquire
certainparticlelikepropertieswhenthelatticeisanalysedusingquantummechanics.
Theyarethenknownasphonons.
Thepropertiesoflong-wavelengthphononsgiverisetosoundinsolids--hencethe
namephononfromtheGreekφωνή(phonē)=voice
GaPisanexampleofanindirectband-gapmaterial.
16

Indirect Recombination:
Thewavelengthofthelightemitted,andhencethecolour,dependsonthebandgap
energyofthematerialsformingthep-njunction.
Theemittedphotonenergyisapproximatelyequaltothebandgapenergyofthe
semiconductor.
Thefollowingequationrelatesthewavelengthandtheenergybandgap.
ℎν=�
??????
ℎ�
λ
=�
??????
λ=
ℎ�
�
??????
WherehisPlank’sconstant,cisthespeedofthelightand�
??????istheenergybandgap
Thus,asemiconductorwitha2eVband-gapemitslightatabout620nm,inthered.A3
eVband-gapmaterialwouldemitat414nm,intheviolet.
17

Light Extraction Process:
Generatinglightefficientlywithinasemiconductormaterialisonlyonepartofthe
problemtobuildanefficientlightsource.
ThenextchallengeistheextractionoflightfromwithintheLEDchiptotheoutside.
Thedesignermustconsidertotalinternalreflection.
AccordingtoSnell’slaw,lightcanescapefromamediumofhighindexofrefractionn
1
intoamediumoflowindexrefractionn
0onlyifitintersectsthesurfacebetweenthetwo
mediaatananglefromnormallessthanthecriticalangleθ
cwithθ
cbeingdefinedby
�
�=�??????�sin
�
0
�
1
18

Light Extraction Process:
MostsemiconductorLEDshaveanisotropicemissionpatternasseenfromwithinthe
light-generatingmaterial.
AssumingacubicshapefortheLEDchip,becauseofinternalreflections,onlyasmall
fractionoftheisotropicallyemittedlightcanescapeanyofthesixsurfaces.
Asacaseinpoint,letuscalculatetheemissionthroughthetopsurface.Fortypical
light-emittingsemiconductors,n
1isintherangeof2.9to3.6.Ifn
1=3.3andn
0=1.0
(air),wefindθ
c=17.68ᵒ.
Theemissionfromanisotropicsourceintoaconewithahalfangleofθ
cisgivenby(1-
cosθ
c)/2.
AftercorrectingforFresnelreflections,only1.6%ofthelightgeneratedescapes
throughtheLEDtopsurfaceintoair.
Dependingonchipandp-njunctiongeometry,virtuallyalloftheremaininglight(98.4
%)isreflectedandabsorbedwithintheLEDchip.
19

Light Extraction Process:
Thefractionoflightcoupledfromchiptoairisafunctionofthenumberofsurfaces
throughwhichthechipcantransmitlighteffectively.MostLEDchipsarecalled
‘‘absorbingsubstrate’’(AS)chips.
Insuchachip,thestartingsubstratematerialhasanarrowbandgapandabsorbsallthe
lightwithenergygreaterthanthebandgapofthesubstrate.
ConsiderthecaseofaGaAsPLEDgrownonaGaAssubstrate.Theemittedlight(Eg>
1.9eV)isabsorbedbytheGaAssubstrate(Eg=1.4eV).
Thus,aGaAsP-emittinglayeronaGaAssubstratecantransmitonlythroughitstop
surface.
Lighttransmittedtowardthesidesurfacesordownwardisabsorbed.
20

Light Extraction Process:
Toincreaselightextraction,thesubstrateorpartoftheepitaxiallayersnearthetopof
thechiphastobemadeofamaterialtransparenttotheemittedlight.
The‘‘transparentsubstrate’’(TS)chipisdesignedsuchthatlighttransmittedtowards
thesidesurfaceswithinθ
chalf-angleconescanescape.
Assumingthatthereisnegligibleabsorptionbetweenthepointoflightgenerationand
thesidewalls,thisincreasestheextractionefficiencybyafactoroffive(fiveinsteadof
oneescapecones).
AcommonapproachistouseahybridchipwithpropertiesbetweenASandTSchips.
Thesechipsutilizeathick,transparentwindowlayerabovethelight-emittinglayer.
Ifthislayerissufficientlythick,thenmostofthelightinthetophalfofthecones
transmittedtowardsthesidesurfaceswillreachthesideofthechipbeforehittingthe
substrate.
Inthiscaseofhybridchips,theefficiency(4.5%,no.ofcones3)isbetweenthatofAS
(1.5%,no.ofcone1)andTS(7.5%,no.ofcones5)chips.
21

LED Structure:
TheLEDstructureplaysacrucialroleinemittinglightfromtheLEDsurface.
TheLEDsarestructuredtoensuremostoftherecombinationstakeplaceonthesurface
bythefollowingtwoways.
1.Byincreasingthedopingconcentrationofthesubstrate,sothatadditionalfree
minoritychargecarrierelectronsmovetothetop,recombineandemitlightatthe
surface.
2.Byincreasingthediffusionlength??????=�??????,whereDisthediffusioncoefficient
andτisthecarrierlifetime.Butwhenincreasedbeyondacriticallengththereisa
chanceofre-absorptionofthephotonsintothedevice.
22

LED Structure:
TheLEDhastobestructuredsothatthephotonsgeneratedfromthedeviceareemitted
withoutbeingreabsorbed.
Onesolutionistomaketheplayeronthetopthin,enoughtocreateadepletionlayer.
Therearedifferentwaystostructurethedomeforefficientemitting.
Followingpictureshowsthelayeredstructure.
23

LED Structure:
LEDsareusuallybuiltonann-typesubstrate,withanelectrodeattachedtothep-type
layerdepositedonitssurface.
P-typesubstrates,whilelesscommon,occuraswell.
ManycommercialLEDs,especiallyGaN/InGaN,alsousesapphiresubstrate.
LEDdomeshapes:TheLEDdomesareconstructedsuchmostofthelightgetsemitted
efficiently.
Followingpictureshowsthetwodifferentkindsofdomes.
24

LED Device Structure:
LEDdevicescomeinabroadrangeofstructures.
Eachmaterialsystemrequiresadifferentoptimization.
TheonlycommonfeatureforallLEDstructuresistheplacementofthep-njunction
wherethelightisgenerated.
Thep-njunctionispracticallyneverplacedinthebulk-grownsubstratematerialfor
thefollowingreasons:
Thebulk-grownmaterialssuchasGaAs,GaP,andInPusuallydonothavetheright
energygapforthedesiredwavelengthoftheemittedlight.
Thelight-generatingregionrequiresmoderatelylowdopingthatisinconsistentwith
theneedforalowseriesresistance.
Bulk-grownmaterialoftenhasarelativelyhighdefectdensity,makingitdifficultto
achievehighefficiency.
25

LED Device Structure:
Forthesereasons,practicallyallcommerciallyimportantLEDstructuresutilizea
secondarygrowthstepontopofasingle-crystalbulk-grownsubstratematerial.
Thesecondarygrowthstepconsistsofasingle-crystallayerlatticematchedtothe
substrate.
Thisgrowthprocessisknownasepitaxialgrowth.
The commonly used epitaxial structures can be classified into the following categories:
Homojunctions
1.grown
2.diffused
Heterojunctions
1.singleconfinement
2.doubleconfinement
26

LED Material:
AnimportantclassofcommercialLEDsthatcoverthevisiblespectrumaretheIII-V
ternaryalloysbasedonalloyingGaAsandGaPwhicharedenotedbyGaAs
1-yP
y.
InGaAlPisanexampleofaquarternary(fourelement)III-Valloywithadirectband
gap.
TheLEDsrealizedusingtwodifferentlydopedsemiconductorsthatarethesame
materialiscalledahomojunction.
Whentheyarerealizedusingdifferentbandgapmaterialstheyarecalledahetero
structuredevice.
AheterostructureLEDisbrighterthanahomojunctionLED.
27

LED Material:
Semiconductorsintheperiodictable:
AnexampleofIII-VcomponentsisGaPorGaAs.
Thefollowingtableshowsthesemiconductorsintheperiodictable.
28
II III IV V VI
B C
Al Si P S
Zn Ga Ge As Se
Cd In Sn Sb Te

LED Material:
Followingisalistofsemiconductormaterialsandthecorrespondingcolours:
AluminiumGalliumArsenide(AlGaAs)—redandinfrared
AluminiumGalliumPhosphide(AlGaP)—green
AluminiumGalliumIndiumPhosphide(AlGaInP)—high-brightnessorange-red,orange,yellow,andgreen
GalliumArsenidePhosphide(GaAsP)—red,orange-red,orange,andyellow
GalliumPhosphide(GaP)—red,yellowandgreen
GalliumNitride(GaN)—green,puregreen(oremeraldgreen),andbluealsowhite(ifithasanAlGaNQuantum
Barrier)
IndiumGalliumNitride(InGaN)—450nm-470nm—nearultraviolet,bluishgreenandblue
SiliconCarbide(SiC)assubstrate—blue
Silicon(Si)assubstrate—blue(underdevelopment)
Sapphire(Al2O3)assubstrate—blue
ZincSelenide(ZnSe)—blue
Diamond(C)—ultraviolet
AluminiumNitride(AlN),AluminiumGalliumNitride(AlGaN),AluminiumGalliumIndiumNitride(AlGaInN)
—neartofarultraviolet(downto210nm)
29

LED Efficiency:
AveryimportantmetricofanLEDistheexternalquantumefficiencyη
ext.
Itquantifiestheefficiencyoftheconversionofelectricalenergyintoemittedoptical
energy.
Itisdefinedasthelightoutputdividedbytheelectricalinputpower.
ItisalsodefinedastheproductofInternalradiativeefficiencyandExtractionefficiency.
η
�??????�
= ??????
������??????���??????∗??????
Forindirectbandgapsemiconductorsη
extisgenerallylessthan1%,whereasforadirect
bandgapmaterialitcouldbesubstantial.
η
??????��
= ??????�����??????��??????��??????��??????�����??????���??????��??????����??????�����??????���??????��
Theinternalefficiencyisafunctionofthequalityofthematerialandthestructureand
compositionofthelayer.
30

Advantages of using LED:
LEDsproducemorelightperwattthanincandescentbulbs;thisisusefulinbatterypowered
orenergy-savingdevices.
LEDscanemitlightofanintendedcolourwithouttheuseofcolourfilters.
ThesolidpackageoftheLEDcanbedesignedtofocusitslight.
Whenusedinapplicationswheredimmingisrequired,LEDsdonotchangetheircolourtint
asthecurrentpassingthroughthemislowered.
LEDsareidealforuseinapplicationsthataresubjecttofrequenton-offcycling,
LEDs,beingsolidstatecomponents,aredifficulttodamagewithexternalshock.
LEDscanhavearelativelylongusefullife.
LEDsmostlyfailbydimmingovertime,ratherthantheabruptburn-outofincandescent
bulbs.
LEDslightupveryquickly.AtypicalredindicatorLEDwillachievefullbrightnessin
microseconds.
LEDscanbeverysmallandareeasilypopulatedontoprintedcircuitboards.
LEDsdonotcontainmercury,unlikecompactfluorescentlamps.
31

Disadvantages of LED:
LEDsarecurrentlymoreexpensive,priceperlumen.
LEDperformancelargelydependsontheambienttemperatureoftheoperating
environment.Over-drivingtheLEDinhighambienttemperaturesmayresultin
overheatingoftheLEDpackage,eventuallyleadingtodevicefailure.
LEDsmustbesuppliedwiththecorrectcurrent.
LEDsdonotapproximatea"pointsource"oflight,sotheycannotbeusedin
applicationsneedingahighlycollimatedbeam.
ThereisincreasingconcernthatblueLEDsandwhiteLEDsarenowcapableof
exceedingsafelimitsoftheso-calledblue-lighthazardasdefinedintheeyesafety
specifications.
32

Applications of LED:
Devices,medicalapplications,clothing,toys
RemoteControls(TVs,VCRs)
Lighting
Indicatorsandsigns
Opto-isolatorsandopto-couplers
Sensors:Transmissive,Reflective,Scattering
FibreOpticSource
AlphaNumeric/NumericDisplay
33