APPLICATIONOF REMOTE SENSINGAND
GEOGRAPHICAL INFORMATIONSYSTEMIN
CIVILENGINEERING
APLIC
INSTRUCTOR
DR. MOHSIN SIDDIQUE
ASSIST. PROFESSOR
DEPARTMENT OF CIVIL ENGINEERING
Optical Remote Sensing A
Optical remote sensing
TPOINFRNIFEMFSGNGDHIYFVIPUFGVMUPUI.FPV.FN EULQpPSIF
GVMUPUI.FNIVNEUNFLEFMEUTFGTPtINFEMFL IFIPUL iNFNRUM PcIFDaF.ILIcLGVtFL IFNEHPUF
UP.GPLGEVFUIMHIcLI.FMUETFLPUtILNFEVFL IFtUERV.
A
l ELEtUPe aF
A
ml ELEtUPTTILUao
A
n IUTPHFscPVVIU
A
gRHLGNeIcLUPH
2
A
Optical remote sensing
NaNLITN PUI cHPNNGMGI. GVLE L I MEHHEpGVt LaeINY
.IeIV.GVt EV L I VRTDIU EM NeIcLUPH DPV.N RNI. GV L I GTPtGVt eUEcINNr
A
lPVc UETPLGc GTPtGVt NaNLIT P
my DPV.No
A
gRHLGNeIcLUPH GTPtGVt NaNLIT P
mhQyv DPV.No
A
sReIUNeIcLUPH GTPtGVt NaNLIT P
myvQbv DPV.No
A
uaeIUNeIcLUPH GTPtGVt NaNLIT P
mbvQhvv DPV.No
Optical Remote Sensing Systems
3
A
n I NIVNEU GN P
single channel
.ILIcLEU NIVNGLGSI LE UP.GPLGEV pGL GV P DUEP.
pPSIHIVtL UPVtIr
A
dM L I pPSIHIVtL UPVtI cEGVcG.I pGL L I
visible range
Y L IV L I UINRHLGVt
GTPtI UINITDHIN P 7
DHPcOQPV.Qp GLI
f e ELEtUPe LPOIV MUET NePcIr
A
n I e aNGcPH wRPVLGLa DIGVt TIPNRUI. GN L I
PeePUIVL DUGt LVINN
EM L I
LPUtILN PV. L I
NeIcLUPH GVMEUTPLGEV
EU 7
cEHERU
7 EM L I LPUtILN GN HENLr
A
WxPTeHIN EM ePVc UETPLGc GTPtGVt NaNLITN PUIC A
-EUH.SGIpQy
A
d()q)s l’q
A
sl)n u:…Ql’q
Panchromatic Imaging System
4
Panchromatic Imaging System
5
A
n IFNIVNEUFGNFPF
multichannel
.ILIcLEUFpGL FPF
MIpFNeIcLUPHFDPV.N
.
A
WPc Fc PVVIHFGNFNIVNGLGSIFLEFUP.GPLGEVFpGL GVFPFVPU UEpFpPSIHIVtL FDPV.r
A
n IFUINRHLGVtFGTPtIFGNFPF
TRHLGHPaIUFGTPtIF
p Gc FcEVLPGVNFDEL FL IF
DUGt LVINN
PV.FNeIcLUPHFm
cEHERU
oFGVMEUTPLGEVFEMFL IFLPUtILNFDIGVtFEDNIUSI.r
A
WxPTeHINFEMFTRHLGNeIcLUPHFNaNLITNFPUI6 A
’7)sF’…qd:Q8
A
7PV.NPLFgss9ng9Wng
A
sl)nFu:…Q:s
A
)0121! "S
Multispectral Imaging System
6
Multispectral Sensors
7
Landsat7 ETM Technical Specification
8
A
’ NReIUNeIcLUPH GTPtGVt NIVNEU PN
many more spectral channels
mLaeGcPHHa
;yvo L PV P TRHLGNeIcLUPH NIVNEUr
A
n I DPV.N PSI VPUUEpIU DPV.pG.L NY IVPDHGVt L I
MGVIU NeIcLUPH
c PUPcLIUGNLGcN
EM L I LPUtILN LE DI cPeLRUI. Da L I NIVNEUr
A
WxPTeHIN EM NReIUNeIcLUPH NaNLITN PUIC
A
MODIS
A
MERIS
SuperspectralImaging Systems
9
A
)UDGLC<vbFOTYFyvChvFPrTrF
.INcIV.GVtFVE.IFmnIUUPoFEUFyChvF
erTrFPNcIV.GVtFVE.IFm’wRPoYFNRVQ
NaVc UEVERNYFVIPUQeEHPUYFcGUcRHPU
A
scPVF:PLICF8vrhFUeTYFcUENNFLUPcO
A
spPL FAGTIVNGEVNCF8hhvFOTFmcUENNF
LUPcOoFDaFyvFOTFmPHEVtFLUPcOFPLF
VP.GUo
A
nIHINcEeICy<r<=FcTF.GPTILIU
MODIS Specifications
LSize:1.0 x 1.6 x 1.0 m, Weight: 228.7 kg, Power:162 .5 W
LData Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbi tal average)
LQuantization:12 bits
L
Spatial Resolution:250 m (bands 1-2), 500 m (bands 3-7) and 1000 m
(bands 8-36) LDesign Life: 6 years
10
A
dL GN PHNE OVEpV PN PV 7
GTPtGVt NeIcLUETILIU
7r GL PcwRGUIN GTPtIN GV PDERL
a
RV.UI. EU TEUI
cEVLGtRERN NeIcLUPH DPV.Nr
A
n I
eUIcGNI NeIcLUPH GVMEUTPLGEV
cEVLPGVI. GV P aeIUNeIcLUPH GTPtI IVPDHIN
DILLIU c PUPcLIUGNPLGEV PV. G.IVLGMGcPLGEV EM LPUtILNr
A
uaeIUNeIcLUPH GTPtIN PSI
eELIVLGPH PeeHGcPLGEVN
GV NRc MGIH.N PN eUIcGNGEV
PtUGcRHLRUI mIrtr TEVGLEUGVt L I LaeINY IPHL Y TEGNLRUI N LPLRN PV. TPLRUGLa EM
cUEeNoY cEPNLPH TPVPtITIVL mIrtr TEVGLEUGVt EM e aLEeHPVO LEVNY eEHHRLGEVY
DPL aTILUa c PVtINor
A
WxPTeHIN EM P aeIUNeIcLUPH NaNLIT PUIC
A
uaeIUGEV EV W)y NPLIHHGLI
A
’…d:ds m’GUDEUVI …GNGDHI PV. dVMUPUI. seIcLUETILIUo
HyperspectralImaging Systems
12
AVIRIS Image Cube
13
HyperspectralImage Cube
A
n I NcGIVcI EM TPOGVt TIPNRUITIVLN MUET e ELEtUPe N GN cPHH I. photogrammetry
A
Evolutionof photography
A
AISIHEeTIVL EM VIp e ELEtUPe Gc LIc VGwRIN PV. IwRGeTIVL
A
AISIHEeTIVL EM VIp eHPLMEUTN MEU cEHHIcLGEV EM GTPtIUa >HPc O PV. p GLI
e ELEtUPe a A
BEHEU e ELEtUPe a
A
BEHEU GVMUPUI. e ELEtUPe a
Photogrammetry
15
How Do We Get Image
16
What is an Image
17
A
’ hvvvQUEp Da hvvvQcEHRTV NPLIHHGLI GTPtI PN L UII NeIcLUPl
c PVVIHNr dM IPc eGxIH GN UIeUINIVLI. Da = DGLN my DaLIo eIU c PVVIHY
EpTPVa DaLI EM cETeRLIU TITEUa PUI UIwRGUI. LE NLEUI L I GTP tIG
Digital Format of Image
Pixels, are the smallest units of an image
18
Digital Format of Image
2D Image
19
Digital Format of Image
3D Image
20
Height Measurement using Parallelex
21
A
’VPtHae GTPtI
GN P TIL E. EM IVcE.GVt P L UIIQ.GTIVNGEVPH GTPtI GV P
NGVtHI eGcLRUI Da NReIUGTeENGVt P ePGU EM eGcLRUIN
A
n I HIML GTPtI PN L I
DHRI
PV.
tUIIV
cEHEU c PVVIHN UITESI. LE HIPSI P
eRUIHa UI. eGcLRUI p GHI L I UGt L GTPtI PN L I
UI.
c PVVIH UITESI.r
A
n I LpE GTPtIN PUI NReIUGTeENI. GVLE EVI eGcLRUI p Gc eUE.R cIN P eGcLRUI
SIUa HGOI L I EUGtGVPH pGL P UI. PV. caPV MUGVtIN PUERV. EDHI cLN p IUI L I
NLIUIE NIePUPLGEV eUE.RcIN .GMMIUIVcIN GV L I EUGtGVPH GTP tINr
Stereo Viewing -Anaglyph
The concept of Stereo imaging is used in 3D movies !!
22
A
’ cETTEV LaeI EM NEHG.QNLPLI .ILIcLEU
GV cRUUIVL RNI GN
L I c PUtI cEReHI.
.ISGcI
mBBAor
A
’L P NeIcGMGc eGxIH HEcPLGEVY L I BBA
IHITIVL GN IxeENI. LE GVcG.IVL HGt L
IVIUta PV. GL DRGH.N Re PV IHIcLUGc
c PUtI eUEeEULGEVPH LE L I GVLIVNGLa EM
L I GVcG.IVL HGt Lr
A
n I IHIcLUGc c PUtI GN NRDNIwRIVLHa
PTeHGMGI. PV. cEVSIULI. MUET PVPHEt
LE .GtGLPH MEUTr
A
’ HPUtI VRTDIU EM BBAN cPV DI
cETDGVI. EV P NGHGcEV c Ge GV P EVI EU
LpE .GTIVNGEVPH PUUPar
Digital Imaging Device
23
Digital Imaging Device
24
Scale of Vertical Photograph The ratio of distance on an image or map, to actual gr ound distance is referred to
as
scale
.
25
Geometry of Vertical Photograph
(Nadir)
26
i
naeINFEMF
fqatgytqgv
GVcHR.IC
i
’LTENe IUGcFUIMUPcLGEVFEMFHGt LFUPaN
i
dTPtIFTELGEVFEUFcPTIUPFN POI
i
7IVNF.GNLEULGEVFm interior orientation)
i
naeINFEMF
.GNeHPcITIVL
GVcHR.IC
i
Bxysntxye)gd)tce)-nytc
i
nGHLFmexterior orientation)
i
nEeEtUPe GcFEUFUIHGIMFmGVcHR.GVtFEDHIcLF IGt Lo
Types of Distortion and Displacement
27
A
sGVcI L I PLTENe IUI .IVNGLa
.IcUIPNI PL Gt IU PHLGLR.IY HGt L
UPaN .E VEL LUPSIH GV NLUPGt L HGVIN
L UERt L I PLTENe IUIr
A
n Ia PUI DIVL PccEU.GVt LE
sVIHHIN
HPpr
A
’ e ELEtUPTTILUGc IwRPLGEVN
PNNRTI L PL HGt L UPaN LUPSIH GV
NLUPGt L ePL NY PV. LE cETeIVNPLI
MEU L I OVEpV UIMUPcLI. ePL NY
cEUUIcLGEVN PUI PeeHGI. LE L I
GTPtI cEEU.GVPLINr
Atmospheric Refraction
28
A
sTPHH IMMIcLN .RI LE L I MHPpN GV L I
EeLGcPH cETeEVIVLN mGrIr HIVNo EM
cPTIUP NaNLITN HIP.GVt LE
.GNLEULGEVNr
A
n Ia PUI LaeGcPHHa TEUI NIUGERN PL
L I I.tIN EM e ELENr A
n INI IMMIcLN PUI UP.GPH MUET L I
eUGVcGePH eEGVL mTPOGVt EDHIcLN
PeeIPU IGL IU cHENIU LEY EU MPUL IU
MUET L I eUGVcGePH eEGVL L PV L Ia
PcLRPHHa PUIo6 PV. TPa DI
cEUUIcLI. RNGVt cPHGDUPLGEV cRUSINr
Lens Distortions (Interior Orientation)
29
i
ce)
geoid
is an
equipotential
gravity surface, which is cEVNG.IUI.FLEFDIFTIPVF
aen)pesep#
i
’FUIMIUIVcIF
ellipsoid
is a mathematically defined NRUMPcIFp Gc FPeeUExGTPLINF
L IFtIEG.FtHEDPHHar
Curvature of Earth
30
Definition of a Reference Ellipsoid
31
a
is the semi-major axis of the
ellipse,andis identified as the
equatorial radius of the ellipsoid
b
is the semi-minor axis of the
ellipse, and is identified with
the polar distances (from the
centre)
These two lengths completely
specify the shape of the ellipsoid
but in practice geodesy
publications classify reference
ellipsoids by giving the semi-
major axis and
theinverseflattening,1/f.
The
flattening,f,
is simply a
measure of how much the
symmetry axis is compressed
relative to the equatorial radius:
WGS84: World Geodetic System 1984
GRS80: Geodetic Reference System 1980
A
’HH e ELEN PSI NETI LGHL PV. L I
eIUMIcL taUE NLPDGHGFPLGEV RVGLY HGOI L I
eIUMIcL HIVNY PN aIL LE DI DRGHLr
A
’ LGHLI. e ELEtUPe eUINIVLN P
NHGt LHa EDHGwRI SGIp UPL IU L PV P
LURI SIULGcPH UIcEU.r
A
nGHL GN cPRNI. Da L I UELPLGEV EM L I
eHPLMEUT PpPa MUET L I SIULGcPHr A
dM L I PTERVL PV. .GUIcLGEV EM LGHL PUI
OVEpV L IV L I e ELE TPa DI
UIcLGMGI.r
Tilt Displacement
Camera orientation for photographs
(Exterior orientation)
32
A
BEHHGVIPUGLaFIwRPLGEVF
GNFPFe aNGcPHFTE.IHFUIeUINIVLGVtFL IFtIETILUaFDILpI IVF
PFNIVNEUFmeUEHIcLGEVFcIVLIUoYFL IFtUERV.FcEEU.GVPLI NFEMFPVFEDHIcLFPV.FL IF
GTPtI
Geometry between Image and Ground
33
A
:ELPLGEVFTPLUGxFEMFtUERV.FcEEU.GVPLIFlm:YFJYFKoFtGS INFGTPtIFcEEU.GVPLIFlmReYF
SeYFpeoCollinearityEquation (cont’d)
34
A
n GNFGNFLaeGcPHHaFL IF
TENLFNIUGERNFLaeIF
EMF.GNeHPcITIVLr
A
n GNF.GNeHPcITIVLF
UP.GPLINFERLpPU.F
MUETF
qP.GU
.
A
n GNFGNFcPRNI.FDaFL IF
eIUNeIcLGSIFtIETILUaF
EMFL IFcPTIUPFPV.FL IFLIUUPGVFPLF
SPUaGVtFIHISPLGEVNr
A
n GNFGNFRNI.FMEUFL UIIFTIPNRUITIVLN6
A
sLIUIEFSGIpGVtFmPVPtHae o
A
uIGt LFTIPNRUITIVL
A
nEeEtUPe GcFTPeeGVtFm7GA’:o
Topographic Displacement
35
A
Relief displacement
TIPNRUITIVLFEVFPFNGVtHIFSIULGcPHFe ELEtUPe
A
Stereoscopic measurement
DPNI.FEVFL IFePUPHHPxFEMFLpEFe ELEtUPe N
Types of height measurement
Height measurement with
stereoscopic measurement
Relief displacement
36
Relief Displacement
37
Relief Displacement A
n I IMMIcL EM UIHGIM .EIN VEL EVHa cPRNI P c PVtI GV L I NcPHI D RL cPV PHNE DI
cEVNG.IUI. PN P cETeEVIVL EM GTPtI .GNeHPcITIVLr A
n I .GNLPVcI
d
DILpIIV L I LpE e ELE eEGVLN GN cPHHI.
relief displacement
DIcPRNI GL GN cPRNI. Da L I IHISPLGEV .GMMIUIVcI DILpIIV ’ P V. ’I
38
A
n GN GN L I TENL RNI. TIL E. EM
TIPNRUGVt IGt LN EV PGU e ELENr
n IUI PUI TPVa MEUTN EM L I ePUPHHPx
IwRPLGEVNr
A
n GN cEUUINeEV.N LE L I .GNLPVcI
DILpIIV GTPtI eEGVLNY EM L I NPTI
EDHIcL EV L I tUERV.Y EV L I HIML PV.
UGt L GTPtIr
A
n I IGt L .GMMIUIVcI cPV DI
cETeRLI. GM L I ePUPHHPx .GMMIUIVcI
GN TIPNRUI. DILpIIV LpE eEGVLN EM
.GMMIUIVL IGt LY RNGVt P ePUPHHPx DPUr
Parallax Height Method
:
Stereoscopic Parallax
(EpipolarGeometry)
39
Assignment: Derive the expression for h
A
)UL EUIcLGMGcPLGEV
GN L I eUEcINN Da p Gc L I
tIETILUGc .GNLEULGEVN EM L I GTPtI PUI
TE.IHI. PV. PccERVLI. MEUr
A
n I EUL EUIcGMGLGcPLGEV eUEcINN aGIH.N TPeQ
PccRUPLI GTPtIN p Gc cPV DI Gt Ha RNIMRH
PN DPNI TPeN PV. TPa DI IPNGHa
GVcEUeEUPLI. GVLE P Ldsr
A
n I NRccINN EM L I EUL EUIcLGMGcPLGEV eUEcINN
.IeIV.N EV L I
PccRUPca EM L I .GtGLPH
IHISPLGEV TE.IH mAWgo PV. L I cEUUIcLGEV
MEUTRHPIr
Orthorectification
40
Flight Panning
41
Digital Image Matching
42
Correlation Coefficient Computing
43
Assignment: Compute the correlation coefficient, c
A
A
digital elevation model
mAWgo GN .IMGVI. PN P MGHI EU .PLPDPNI cEVLPGVGVt
IHISPLGEV eEGVLN ESIU P cEVLGtRERN PUIPr
A
AWgN TPa DI NRD.GSG.I. GVLEC
A
Digital surface models
mAsgo L PL cEVLPGV IHISPLGEV GVMEUTPLGEV PDERL PHH
MIPLRUIN GV L I HPV.NcPeIY NRc PN SItILPLGEVY DRGH.GVtNY P V. EL IU
NLURcLRUIN6
A
Digital terrain models
mAngo L PL cEVLPGV IHISPLGEV GVMEUTPLGEV PDERL L I
DPUIQWPUL NRUMPcI pGL ERL L I GVMHRIVcI EM SItILPLGEV EU T PVQTP.I
NLURcLRUINr
A
MERU TPHEU LIc VEHEtGIN PUI RNI. LE EDLPGV IHISPLGEV GVMEUT PLGEV
A
dV NGLR NRUSIaGVt
A
l ELEtUPTTILUa
A
dVLIUMIUETILUGc saVL ILGc ’eIULRUI :P.PU mdMs’:o
A
7Gt L AILIcLGEV PV. :PVtGVt m7GA’:o
Digital Elevation Models
44
Digital Elevation Models
45
A
WxLUPcLGVtFLIUUPGVFePUPTILIUN
A
gE.IHGVt pPLIUFMHEp EUFTPNNFTESITIVLF
mIrtrY PSPHPVc IN PV. HPV.NHG.INo A
BUIPLGEVFEMFUIHGIMFTPeN
A
:IV.IUGVtFEM hAFSGNRPHGFPLGEVNr
A
h.FMHGt LFeHPVVGVt
A
BUIPLGEVFEMFe aNGcPHFTE.IHNF
mGVcHR.GVt UPGNI.QUIHGIMFTPeNo A
:IcLGMGcPLGEVFEM PIUGPHF
e ELEtUPe a EU NPLIHHGLIFGTPtIUar A
:I.RcLGEVFmLIUUPGVFcEUUIcLGEVoF
EM tUPSGLa TIPNRUITIVLNF
mtUPSGTILUaY e aNGcPHFtIE.INaor
A
nIUUPGVFPVPHaNINF
GV tIETEUe EHEta PV. e aNGcPHF
tIEtUPe a
Uses of Digital Elevation Models
A
LIEtUPe Gc dVMEUTPLGEV saNLITN mLdso
WVtGVIIUGVt PV. GVMUPNLURcLRUI .INGtV A
LHEDPH eENGLGEVGVt NaNLITN mLlso
A
7GVIQEMQNGt L PVPHaNGN
A
>PNI TPeeGVt
A
MHGt L NGTRHPLGEV
A
lUIcGNGEV MPUTGVt PV. MEUINLUa
A
sRUMPcI PVPHaNGN
A
dVLIHHGtIVL LUPVNeEULPLGEV NaNLITN mdnso
A
’RLE NPMILa 9 ’.SPVcI. AUGSIU
’NNGNLPVcI saNLITN m’A’so A
’Uc PIEHEta
46
Comments….
Questions….
Suggestions….
47
I amgreatly thankful to all the information sources
(regarding remote sensing and GIS) on internet that I
accessed and utilized for the preparation of present
lecture.
Thank you !
Feel free to contact