(PCA) principal component analysis Analysis

SiddheshMhatre27 33 views 23 slides Oct 17, 2024
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

Information about principal component analysis


Slide Content

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Principal Component Analysis Principal Component Analysis
(PCA)(PCA)

Alternative Derivation Alternative Derivation
(PCA)(PCA)

Alternative Derivation Alternative Derivation
(PCA)(PCA)

Alternative Derivation Alternative Derivation
(PCA)(PCA)

Alternative Derivation Alternative Derivation
(PCA)(PCA)

Singular Value DecompositionSingular Value Decomposition

Singular Value DecompositionSingular Value Decomposition

Singular Value DecompositionSingular Value Decomposition

Example 1Example 1
•Use the data set "noisy.mat" available on
your CD. The data set consists of 1965,
20-pixel-by-28-pixel grey-scale images
distorted by adding Gaussian noises to
each pixel with s=25.

Example 1Example 1
•Apply PCA to the noisy data. Suppose the
intrinsic dimensionality of the data is 10.
Compute reconstructed images using the
top d = 10 eigenvectors and plot original
and reconstructed images

Example 1Example 1
•If original images are stored in matrix X (it is 560
by 1965 matrix) and reconstructed images are in
matrix X_hat , you can type in
• colormap gray
and then
•imagesc(reshape(X(:, 10), 20 28)’)
•imagesc(reshape(X_hat(:, 10), 20 28)’)
to plot the 10th original image and its
reconstruction.

Example 2Example 2

Example 2Example 2
•Load the sample data, which includes digits 2 and 3 of
64 measurements on a sample of 400.

load 2_3.mat
•Extract appropriate features by PCA
[u s v]=svd(X','econ');
•Create data
Low_dimensional_data=u(:,1:2);
•Observe low dimensional data
Imagesc(Low_dimensional_data)
Tags