PHYSICS MAXWELL BOLTZMANN STATISTICS SCIENCE.ppt

754 views 27 slides Feb 28, 2024
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

This is a ppt for both engineering and BSc.,PG physics student.


Slide Content

Chapter 3
Classical Statistics of
Maxwell-Boltzmann

1-Boltzmann Statistics
-Goal:
Find the occupation number of each energy level (i.e. find
(N
1,N
2,…,N
n)) when the thermodynamic probability is a maximum.
-Constraints:)1(
1



i
iNN )2(
1



i
iiNU 
Nand Uare fixed
-Consider the first energy level, i=1. The number of ways of selecting
N
1particles from a total of N to be placed in the first level is)!(!
!
111 NNN
N
N
N









1-Boltzmann Statistics
We ask:
In how many ways can these N
1particles be arranged in the first
level such that in this level there are g
1quantum states?
For each particle there are g
1choices. That is, there are
possibilities in all.
Thus the number of ways to put N
1particles into a level containing
g
1quantum states is
1
1
N
g  !!
!
11
1
1
NNN
gN
N

1-Boltzmann Statistics
For the second energy level, the situation is the same, except that
there are only (N-N
1) particles remaining to deal with: 
 !!
!
212
21
2
NNNN
gNN
N


Continuing the process, we obtain the Boltzmann distribution ω
Bas: 
 
 
 
 









3213
321
212
21
11
1
21
!
!

!!
!
!!
!
)...,(
3
21
NNNNN
gNNN
NNNN
gNN
NNN
gN
NNN
N
NN
nB

1-Boltzmann Statistics


!!!
!),(
321
321
21
321
NNN
ggg
NNNN
NNN
nB
 )3(
!
!),(
1
21 










n
i i
N
i
nB
N
g
NNNN
i

2-The Boltzmann Distribution
Now our task is to maximize ω
Bof Equation (3)
At maximum, . Hence we can
choose to maximize ln(ω
B )instead of ω
Bitself, this turns the
products into sums in Equation (3). 0)(ln0 
B
B
BB
d
dd



Since the logarithm is a monotonic function of its argument, the
maxima of ω
Band ln(ω
B)occur at the same point.
From Equation (3), we have: 


1
)!ln()ln()!ln()ln(
i
iiiB NgNN

2-The Boltzmann Distribution 


1
)!ln()ln()!ln()ln(
i
iiiB NgNN iiii NNNN  )ln()!ln(
Applying Stirling’s law: 


1
)ln()ln()!ln()ln(
i
iiiiiB NNNgNN )ln()ln(1
1
)ln()ln(
)ln(
ii
i
iii
i
B
Ng
N
NNg
N




2-The Boltzmann Distribution
Now, we introduce the constraints
Introducing Lagrange multipliers (see chapter 2 in Classical
Mechanics (2)):0
)ln(
21









iii
B
NNN




 0)ln()ln( 
iii Ng  i
ii
ii
ii
i
N
NU
N
NN

















2
1
2
1
1
1
0
10

2-The Boltzmann Distributioni
i
i
i
i
i
g
N
N
g
 

















lnln ii
eegNe
g
N
ii
i
i  
 ??

e 




11 i
i
i
i
i
eegNN
 






1
1
i
ii
i
i
i
eg
N
eegeN

 )4(
1





i
i
i
i
i
i
eg
eNg
N


We will prove later thatTk
B
1


2-The Boltzmann Distribution(5)on)distributi (Boltzmann




i
ii
i
i
i
i
eg
Ne
g
N
f


and hence
The sum in the denominator is called the partition function for a
single particle(N=1) or sum-over-states, and is represented by the
symbol Z
sp:)6(
1




n
i
isp
i
egZ

where f
iis the probability of occupation of a single state belonging
to the ith energy level.

2-The Boltzmann Distribution
or)7(
1





s
sp
s
eZ

Ω= total number of microstates of the system,
s = the index of the state (microstate) that the system can occupy,
ε
s= the total energy of the system when it is in microstate s.
Example:
A system possesses two identical and distinguishable particles (N=2),
and three energy levels (ε
1=0, ε
2=ε, and ε
3=2ε) with g
1=2, and
g
2=g
3=1. Calculate Z
spby using Eqs.(6) and (7)

2-The Boltzmann Distribution
MacrostateNb. microstates
(N
1
,N
2
,N
3
) ω
B
ε
s
(1,0,0) 2 0
(0,1,0) 1 ε
(0,0,1) 1 2ε


2
)2()0(
321
3
1
2
2
321








ee
eee
egegegegZ
i
isp
i 

2
)1,0,0(
)2(
)0,1,0(
)(
)0,0,1(
)0(
)0,0,1(
)0(
4
1
2






ee
eeeeeZ
s
sp
s


2-The Boltzmann Distribution
If the energy levels are crowded together very closely, as they are
for a gaseous system:
where
g(ε)dε: number of states in the energy range from εto ε+dε,
N(ε)dε: number of particles in the range εto ε+dε.
We then obtain the continuous distribution function:

dNN
dgg
byreplaced
i
byreplaced
i
)(
)(
 
  








deg
Ne
g
N
f
)()(
)(
)(

3-Dilute gases and the Maxwell-
Boltzmann Distribution
The word “dilute” means N
i<< g
i, for all i.
This condition holds for real gases except at very low temperatures.
The Maxwell-Boltzmann statistics can be written in this case as:










n
i i
N
i
MB
N
g
i
1!

3-Dilute gases and the Maxwell-
Boltzmann Distribution
The Maxwell-Boltzmann distribution corresponding to ω
MB,max:










n
i i
N
i
MB
N
g
i
1!
 










n
i i
N
i
B
N
g
N
i
1!
!

MBand ω
Bdiffer only by a constant–the factor N!,
-Since maximizing ωinvolves taking derivatives and the derivative
of a constant is zero, so we get precisely the Boltzmann distribution: on)distributiBoltzmann -(Maxwell
spi
i
i
Z
Ne
g
N
f
i



3-Dilute gases and the Maxwell-
Boltzmann Distribution
-Boltzmann statisticsassumes distinguishable (localizable) particles
and therefore has limited application, largely solids and some liquids.
-Maxwell-Boltzmann statisticsis a very useful approximation for
the special case of a dilute gas, which is a good model for a real
gas under most conditions.

4-Thermodynamic Properties from the
Partition Function
In this section, we will state the relationships between the partition
function and the various thermodynamic parameters of the system. 













1i
i
sp
i
eg
Z

 





1i
ii
sp
i
eg
Z


 NT
i
i
i
NT
i
i
NT
sp
V
egeg
VV
Z
i
i
,1
,
1
,



































 






 NT
i
i
i
NT
sp
V
eg
V
Z
i
,1
,


















 






4-Thermodynamic Properties from the
Partition Function





11
1
,
1
i
ii
spsp
ii
i
ii
i
i
eg
Z
u
Z
e
NgNandN
N
u



-Calculation of average energy per particle:






 

 sp
spi
i
sp
Z
Z
eg
Z
u
i
11
1  )ln(
sp
Zu


 NuU
-Calculation of internal energy of the system: )ln(
spZNU




4-Thermodynamic Properties from the
Partition Function
-Calculation of Entropy for Maxwell-Boltzmann statistics: i
i
e
N
Z
N
g
Z
e
NgN
sp
i
i
sp
ii



 


1
max
!
i i
N
i
N
g
i
  


1
)!ln()ln()ln(
i
iii NgN  


1
)ln()ln()ln(
i
iiiii NNNgN 











11
ln)ln(
i
i
i i
i
i N
N
g
N 











1
ln)ln(
i
sp
i Ne
N
Z
N
i
with

4-Thermodynamic Properties from the
Partition FunctionNN
N
Z
N
i
ii
sp
i 















1
)(ln)ln(  NNN
N
Z
U
i
ii
N
i
i
sp
















11
ln)ln(  NUNNZN
sp
 )ln()ln()ln( UNZN
sp
 )1)ln()(ln()ln( )ln(
BkS   UkNZNkS
BspB
 1)ln()ln(

4-Thermodynamic Properties from the
Partition Function
-Calculation of βVU
S
T
pdVdUTdS 








1 UkZNkS
BspB
 )ln( V
BB
V
sp
B
V U
Ukk
U
Z
Nk
U
S






























)ln( T
k
U
Ukk
U
Z
Nk
U
S
B
V
BB
V
NU
B
V
1)ln(
/
































 Tk
B
1


4-Thermodynamic Properties from the
Partition Function
-Calculation of the Helmholtz free energy: 

U
BspB UTkNZTNkUATSUA

 1)ln()ln(  1)ln()ln(  NZTNkA
spB
-Calculation of the pressure:dV
V
A
dT
T
A
pdVSdTdA
TV
















 TV
A
p 







 T
sp
B
V
Z
TNkp











)ln(

5-Partition Function for a Gas



1i
Tk
isp
Bi
egZ

The definition of the partition function is
For a sample of gas in a container of macroscopic size, the energy
levels are very closely spaced.
Consequences:
-The energy levels can be regarded as a continuum.
-We can use the result for the density of states derived in Chapter 2:

 dm
h
V
dg
s
2123
3
24
)( 

5-Partition Function for a Gas
γ
s= 1 since the gas is composed of molecules rather than spin 1/2
particles. Thus

 dm
h
V
dg
2123
3
24
)( 
Then





0
2123
0
3
24
)( 



dem
h
V
degZ
TkTk
sp
BB
The integral can be found in tables and isTk
Tk
de
B
BTk
B


2
0
21


 23
2
2







h
Tmk
VZ
B
sp

Partition function depends on both the
volume V and the temperature T.

6-Properties of a Monatomic Ideal Gas23
2
2
),( 






h
Tmk
VTVZ
B
sp
 






2
2
ln
2
3
)ln(
2
3
)ln()ln(
h
mk
TVZ
B
sp

-Calculation of pressure:V
TNk
p
V
Z
TNkp
B
T
sp
B 











)ln( R
N
R
N
n
knRNknRTpV
A
BB
1
Since 
where N
Ais the Avogadro’s number and n the number of moles. A
B
N
R
k

6-Properties of a Monatomic Ideal Gas
-Calculation of internal energy: 
 







T
T
Z
NUZNU
sp
sp
)ln(
)ln( 2
2
11
Tk
T
TkTTk
B
BB









 















TT
Z
h
km
TVZ
spB
sp
1
2
3)ln(2
ln
2
3
)ln(
2
3
)ln()ln(
2
 






T
TNkU
B
2
3
2 TNkU
B
2
3

6-Properties of a Monatomic Ideal Gas
-Calculation of heat capacity at constant volume:BVB
NV
V
NkCTNkU
T
U
C
2
3
2
3
and
,









C
Vis constant and independent of temperature in an ideal gas. BAV knNC
2
3
 nRC
V
2
3

-Calculation of entropy 
T
U
NZNkS
spB  1)ln()ln( T
TNk
N
h
mk
TVNkS
B
B
B
2
3
1)ln(
2
ln
2
3
)ln(
2
3
)ln(
2














 



























3
23
)2(
ln
2
5
)ln(
2
3
ln
h
mk
NkT
N
V
NkS
B
BB