Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why ...
Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical
Size: 9.01 MB
Language: en
Added: Oct 19, 2024
Slides: 94 pages
Slide Content
U l t r a s o und 7/19/2024 1
Wh a t i s So und ? M e c h a n i c a l a n d Lo n g i tu d i n a l w a v e s w a v e t h a t c a n tr a n s f e r a di s ta n c e u s i n g a m e d i a . Ca nn o t t r a v e l t h r o u g h V a c u u m . 2 7/19/2024
Wh a t i s Ultr a s o und ? 3 U l tr a s o un d i s a m e c h a n i c a l , l o n g it u d i n a l wave with a frequency exceeding the upper limit of human hearing, which is 20,000 Hz or 20 kHz. T y p i c a l l y a t 2 – 2 M h z. 7/19/2024
Hearing and Voicing Ranges T he human ear can detect sounds with frequencies between 20 Hz and 20,000 Hz. I nfrasound Sound with frequencies below the human hearing range ultrasound sound with frequencies above the human hearing range is called . Humans are also able to produce sound by speaking. The range of frequencies that you can produce is your voicing range and for humans, this is from 85 Hz to 1,100 Hz. 7/19/2024 4
7/19/2024 5
B a s i c U lt r a so u n d P h ysics Velocity 6 Frequency Amplitude Wavelength 7/19/2024
Velocity 7 Speed at which a sound wave travels through a medium(cm/sec) Determined by density and stiffness of media S l o w es t i n a i r / g a s F a s t es t i n s o l i d s A v e r a g e s p e e d o f u l t r a s o u n d i n bo d y i s 1540m/sec 7/19/2024
Velocity N e a r F i e l d I m a g i n g 8 F a r F i e l d I m a g i n g T i ssu e s c l o s e r a p p e a r o n t o p a n d f a s t e r t h e w a v e s return T is s u e s f u r t h e r a p p e a r a t t h e bo tt o m & slo w e r t h e w a ves r e t u rn 7/19/2024
Frequency 9 N u m b e r o f c yc l e s p e r s e co nd Un i t s a r e H e r tz Ultrasound imaging frequency range 2-20Mhz 7/19/2024
Frequency Higher the freq Lower the penetration and Higher t h e r e so l u t i o n Low the freq higher the penetration and lower the resolution 10 7/19/2024
Wavelength D i st a n c e o v e r w h i c h o n e c yc l e o c c u r s 11 7/19/2024
V e l o cit y ( v ) , F r e q u e n c y ( ƒ ) , & W a v e l e n g th ( λ ) 12 G i v en a c o n s t a nt v e l o c i t y , a s f r e qu e nc y i n c r e a s e s w a v e l e n g t h d e c r e a s e s V = ƒ λ 7/19/2024
A m pli t u d e 13 The strength/intensity of a sound wave at any g i v e n ti m e R e p r e s e n t e d a s he i g h t o f t h e w a v e Decreases with increasing depth 7/19/2024
A m pli t u d e D e fi n e s t h e B r i g h t n e ss o f t h e i m a g e 14 I r re s p e c t i v e o f t h e F r e q t h e A m p r e m a i n s c o n s t a n t The Higher the Amp the brighter the image and the l o w er t h e m o re d a r k e r t h e i m a g e s R e t u r n i n g W a ves 7/19/2024
H o w U l tr a s o und W o r k s … 15 H o w d o e s a n u l tr a s o un d m a c h i ne m a k e a n i m a g e ? 7/19/2024
Applications Training for Service – Ravindran Padmanabhan 14 P i e z o e l e c tr i c E f f e c t o f Ultr a s o und 1 . E l e c tri c a l E n erg y c o n vert e d t o S o u n d waves 2 . T h e S o u n d w a ves a re ref l e c t ed b y ti s s ue s 3 . Ref le c t ed S o u n d w a ves a r e c o n ver t ed t o e le c t r i c a l s i g n a l s a n d lat e r t o I m a g e 7/19/2024 16
15 P uls e - Ec ho M e tho d Ultrasound transducer produces “ p u l s e s ” o f u l t r a s o u n d w a v e s T h e s e w a v e s tr a v e l w i th i n the b o d y a n d interact w i th v a r i o u s t i s s u e s T h e r e f l e ct e d w a v e s r e t u r n to t h e tr a n s d u c e r and are processed by the ultrasound machine An i m a g e w h i c h r e p r e s e n ts t h e s e r e f l e c t i o ns i s f s o T r a i r nin g m f o r S e er v i d ce – R o a vin d n r a n P t a d m h a n e a b h a n m o n i t o r 7/19/2024 17
Reflection – – – O c c urs a t a bo un d a r y b e t w een 2 a d j a c ent t i s s u e s o r media The a mo unt o f r efl e c ti o n d epen d s o n d i f f e r e n ce s i n a co u s ti c i m p e d a n c e ( z ) bet w een med i a The ult ra s o und i ma g e i s f o rme d f r o m r efl ec t ed echoes Transducer Z = D e ns i t y x V e l oc i ty 19 7/19/2024
Scattering • • • R e d i r e c ti o n o f s o und i n s e v er a l d i r e c t i o n s Caused by interaction with small reflector or rough surface O n ly po r t i o n o f s o und w a v e r eturns to t r a n s d u c er 22 7/19/2024
N o t a l l t he s o und w a v e i s r e f l e c t ed , s o m e c o n t i n u es d e ep e r i n t o t he b o d y T hes e w a v es w i l l r ef le c t f r o m d e e p e r ti ss ue structures Transducer T r a n s m i s s i o n 23 7/19/2024
T he d e ep e r t he w a v e t r a v e l s i n t he b o d y , t h e w e a k e r i t b ec o mes T he a m p l i t ud e o f t h e w a v e d e c r e a s es w i t h i n c r e a s i n g d e p t h Attenuation 24 7/19/2024
G o a l o f a n U lt r a s o und S y s t e m 25 T h e u l t i m a te g o a l o f a n y u l tr a s o u n d s y s t e m i s to m a k e l i k e t i s s u e s l o o k a l i k e a n d un l i k e tissues look different. 7/19/2024
Acoustic Impedance R es o l v i ng c a p a b i l it y o f t he s y s t em a xi a l / l a t e r a l r e s o l uti o n s p a ti a l r e s o l u t i o n c o ntr a s t r e s o l u t i o n temporal resolution Beamformation s end a n d r e c ei v e P r o c es s i n g P o w er a bi l i ty to c a ptu r e , p r e se r v e a nd d i s pl a y t he i n f o r ma t i o n 26 Accomplishing this goal depends upon... 7/19/2024
A c o u s t i c Im pe d a nc e 27 • • • • The product of the tissue’s density and the sound velocity w i t h i n the t i ss ue Amp l i tu d e o f r eturni ng e c ho i s p r o p o r ti o na l t o the d i f f e r en c e i n a co u s t i c i mpe d a nce bet w e en the t w o t i s s u e s Velocities: Soft tissues = 1400-1600m/sec – Bone = 4080 – Air = 330 Thus, when an ultrasound beam encounters two regions of very different acoustic impedances, the beam is reflected or absorbed Cannot penetrate E x a m p le : so ft t issu e – b o n e i n t e r f a c e 7/19/2024
T y pe s o f R e s o lu t i o n Axial Resolution specifies how close together two objects can b e a l o n g t h e ax i s o f t he be a m , y e t s t i l l b e d ete c t ed a s t w o s e p a r a t e o b j ec t s f r eq u enc y ( w a v e l e n g t h) a f f e c t s a x i a l r es o l u t i o n 30 7/19/2024
T y pe s o f R e s o luti o n La t e r a l R e s o l ut i o n t h e a bi l i t y t o r es o l v e t w o a d j a c e n t o b j ec t s t h a t a r e p e r p e n d i cu l a r t o t he b e a m a x i s a s s ep a r a t e o b j ec t s be a m w i d t h a f f e c t s l a t e r a l r es o l u t i o n 31 7/19/2024
T y pe s o f R e s o luti o n 32 S p a t i a l R e s o l u tio n a l s o c a l l ed D e t a i l R es o l u t i o n t he c o mb i n a t i o n o f A X I A L a nd L A T E R A L resolution s o m e c us t o me r s m a y us e t h i s te r m 7/19/2024
T y pe s o f R e s o lu t i o n Contrast Resolution – t he a b i l i t y t o r e s o lv e t w o a d j a c e nt o b j e c t s o f s i m i l a r i n te ns i t y / r ef l ec t i v e p r o pe r ti es a s s e p a r a t e o b j e c t s 33 7/19/2024
T y pe s o f R e s o luti o n T e m p o r a l R e s o l u t i o n t h e a bi l i t y t o a c c u r a te l y l o c a t e t he p o s i t i o n o f mo v i ng s t r u c t u r e s a t p a r t i c u l a r i ns t a n t s i n t i me a l s o kn o w n a s f r a m e r a t e VERY IMPORTANT IN CARDIOLOGY 34 7/19/2024
W h a t d e term i n e s h o w f a r u l t r a s o u nd w a v es c a n t r a v e l ? 35 T he FR E Q U E N CY o f t h e t r a n s d u c e r T he H I G H E R t h e f r e q u en c y , t h e LE S S i t c a n penetrate T he L O W ER t h e f r e q u enc y , t h e D E E P ER i t c a n penetrate Attenuation is directly related to frequency The frequency of a transducer is labeled in Megahertz (MHz) 7/19/2024
F r e que n c y v s . R e s o lut i o n 36 T h e f r e q u e n c y a l s o a f f e c t s the Q U A L I T Y o f t h e u l t r a s o u n d i m a g e T h e H I G H ER t he f r eq u e n c y , t he B E T T ER t he resolution T h e L O W ER t h e f r e q u en c y , t he L E SS t h e resolution 7/19/2024
F r e que n c y v s . R e s o lut i o n 37 A 1 2 M H z tr a n s d u c e r h a s v e r y g o o d r e s o l u tio n , but c a nn o t p e n e tr a te v e r y d e e p i n to t h e b o d y A 3 M H z tr a n s d u c e r c a n p e ne tr a te d e e p i n to t h e b o d y , b u t t h e r e s o l u t i o n i s n o t a s g o o d a s t h e 1 2 M H z 7/19/2024
H o w i s a n i m a g e f o r m e d o n t h e m o n i t o r ? 38 T he a m p l i t u d e o f e a c h r e f l e c t ed w a v e i s r e p r es e n t ed b y a d o t The position of the dot represents the depth from w h i c h t he ec ho i s r e c e i v e d The brightness of the dot represents the strength o f t h e r e t u r n i n g e c ho These dots are combined to form a complete image 7/19/2024
P o s i t i o n o f R e f l e c t e d E c h o e s 39 H o w d o e s t he s y s t em k n o w t he d e p t h o f t he reflection? TIMING The system calculates how long it takes for the echo to return t o the tr a n s d u c er T he v el o c i t y i n ti s s u e i s a s s umed co n s t a nt a t 1540m / s ec V e l o c i t y = Di s t a nc e x T i me 2 7/19/2024
R e f l e c te d E c ho e s 40 S t r o n g R e f l e c t i o n s = W h i t e d o t s Pericardium, calcified structures,diaphragm W e a k er R ef l ec ti o n s = G r e y d o t s Myocardium, valve tissue, vessel walls,liver N o R e f l e c t i o n s = B l a c k d o t s Intra-cardiac cavities,gall bladder 7/19/2024
Transducer The transducer probe generates and receives sound waves using a principle called the piezoelectric effect. In the probe, there are one or more quartz crystals called piezoelectric crystals . When an electric current is applied to these crystals, they change shape rapidly. The rapid shape changes or vibrations, of the crystals produce sound waves that travel outward. Conversely, when sound or pressure waves hit the crystals, they emit electrical currents. Therefore, the same crystals can be used to send and receive sound waves.