PHYSICS OF MY FAVORITE FRIEND IS COMING OUT

aliahmadkabul79 15 views 94 slides Oct 19, 2024
Slide 1
Slide 1 of 94
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94

About This Presentation

Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why we have a lot more than we need in our lives Biomedical engineering and biomedical research is the main reason why ...


Slide Content

U l t r a s o und 7/19/2024 1

Wh a t i s So und ? M e c h a n i c a l a n d Lo n g i tu d i n a l w a v e s w a v e t h a t c a n tr a n s f e r a di s ta n c e u s i n g a m e d i a . Ca nn o t t r a v e l t h r o u g h V a c u u m . 2 7/19/2024

Wh a t i s Ultr a s o und ? 3 U l tr a s o un d i s a m e c h a n i c a l , l o n g it u d i n a l wave with a frequency exceeding the upper limit of human hearing, which is 20,000 Hz or 20 kHz. T y p i c a l l y a t 2 – 2 M h z. 7/19/2024

Hearing and Voicing Ranges T he human ear can detect sounds with frequencies between 20 Hz and 20,000 Hz. I nfrasound   Sound with frequencies below the human  hearing range   ultrasound sound with frequencies above the human  hearing range   is called . Humans are also able to produce sound by speaking. The range of frequencies that you can produce is your  voicing range  and for humans, this is from 85 Hz to 1,100 Hz. 7/19/2024 4

7/19/2024 5

B a s i c U lt r a so u n d P h ysics Velocity 6 Frequency Amplitude Wavelength 7/19/2024

Velocity 7 Speed at which a sound wave travels through a medium(cm/sec) Determined by density and stiffness of media S l o w es t i n a i r / g a s F a s t es t i n s o l i d s A v e r a g e s p e e d o f u l t r a s o u n d i n bo d y i s 1540m/sec 7/19/2024

Velocity N e a r F i e l d I m a g i n g 8 F a r F i e l d I m a g i n g T i ssu e s c l o s e r a p p e a r o n t o p a n d f a s t e r t h e w a v e s return T is s u e s f u r t h e r a p p e a r a t t h e bo tt o m & slo w e r t h e w a ves r e t u rn 7/19/2024

Frequency 9 N u m b e r o f c yc l e s p e r s e co nd Un i t s a r e H e r tz Ultrasound imaging frequency range 2-20Mhz 7/19/2024

Frequency Higher the freq Lower the penetration and Higher t h e r e so l u t i o n Low the freq higher the penetration and lower the resolution 10 7/19/2024

Wavelength D i st a n c e o v e r w h i c h o n e c yc l e o c c u r s 11 7/19/2024

V e l o cit y ( v ) , F r e q u e n c y ( ƒ ) , & W a v e l e n g th ( λ ) 12 G i v en a c o n s t a nt v e l o c i t y , a s f r e qu e nc y i n c r e a s e s w a v e l e n g t h d e c r e a s e s V = ƒ λ 7/19/2024

A m pli t u d e 13 The strength/intensity of a sound wave at any g i v e n ti m e R e p r e s e n t e d a s he i g h t o f t h e w a v e Decreases with increasing depth 7/19/2024

A m pli t u d e D e fi n e s t h e B r i g h t n e ss o f t h e i m a g e 14 I r re s p e c t i v e o f t h e F r e q t h e A m p r e m a i n s c o n s t a n t The Higher the Amp the brighter the image and the l o w er t h e m o re d a r k e r t h e i m a g e s R e t u r n i n g W a ves 7/19/2024

H o w U l tr a s o und W o r k s … 15 H o w d o e s a n u l tr a s o un d m a c h i ne m a k e a n i m a g e ? 7/19/2024

Applications Training for Service – Ravindran Padmanabhan 14 P i e z o e l e c tr i c E f f e c t o f Ultr a s o und 1 . E l e c tri c a l E n erg y c o n vert e d t o S o u n d waves 2 . T h e S o u n d w a ves a re ref l e c t ed b y ti s s ue s 3 . Ref le c t ed S o u n d w a ves a r e c o n ver t ed t o e le c t r i c a l s i g n a l s a n d lat e r t o I m a g e 7/19/2024 16

15 P uls e - Ec ho M e tho d Ultrasound transducer produces “ p u l s e s ” o f u l t r a s o u n d w a v e s T h e s e w a v e s tr a v e l w i th i n the b o d y a n d interact w i th v a r i o u s t i s s u e s T h e r e f l e ct e d w a v e s r e t u r n to t h e tr a n s d u c e r and are processed by the ultrasound machine An i m a g e w h i c h r e p r e s e n ts t h e s e r e f l e c t i o ns i s f s o T r a i r nin g m f o r S e er v i d ce – R o a vin d n r a n P t a d m h a n e a b h a n m o n i t o r 7/19/2024 17

Reflection – – – O c c urs a t a bo un d a r y b e t w een 2 a d j a c ent t i s s u e s o r media The a mo unt o f r efl e c ti o n d epen d s o n d i f f e r e n ce s i n a co u s ti c i m p e d a n c e ( z ) bet w een med i a The ult ra s o und i ma g e i s f o rme d f r o m r efl ec t ed echoes Transducer Z = D e ns i t y x V e l oc i ty 19 7/19/2024

Scattering • • • R e d i r e c ti o n o f s o und i n s e v er a l d i r e c t i o n s Caused by interaction with small reflector or rough surface O n ly po r t i o n o f s o und w a v e r eturns to t r a n s d u c er 22 7/19/2024

N o t a l l t he s o und w a v e i s r e f l e c t ed , s o m e c o n t i n u es d e ep e r i n t o t he b o d y T hes e w a v es w i l l r ef le c t f r o m d e e p e r ti ss ue structures Transducer T r a n s m i s s i o n 23 7/19/2024

T he d e ep e r t he w a v e t r a v e l s i n t he b o d y , t h e w e a k e r i t b ec o mes T he a m p l i t ud e o f t h e w a v e d e c r e a s es w i t h i n c r e a s i n g d e p t h Attenuation 24 7/19/2024

G o a l o f a n U lt r a s o und S y s t e m 25 T h e u l t i m a te g o a l o f a n y u l tr a s o u n d s y s t e m i s to m a k e l i k e t i s s u e s l o o k a l i k e a n d un l i k e tissues look different. 7/19/2024

Acoustic Impedance R es o l v i ng c a p a b i l it y o f t he s y s t em a xi a l / l a t e r a l r e s o l uti o n s p a ti a l r e s o l u t i o n c o ntr a s t r e s o l u t i o n temporal resolution Beamformation s end a n d r e c ei v e P r o c es s i n g P o w er a bi l i ty to c a ptu r e , p r e se r v e a nd d i s pl a y t he i n f o r ma t i o n 26 Accomplishing this goal depends upon... 7/19/2024

A c o u s t i c Im pe d a nc e 27 • • • • The product of the tissue’s density and the sound velocity w i t h i n the t i ss ue Amp l i tu d e o f r eturni ng e c ho i s p r o p o r ti o na l t o the d i f f e r en c e i n a co u s t i c i mpe d a nce bet w e en the t w o t i s s u e s Velocities: Soft tissues = 1400-1600m/sec – Bone = 4080 – Air = 330 Thus, when an ultrasound beam encounters two regions of very different acoustic impedances, the beam is reflected or absorbed Cannot penetrate E x a m p le : so ft t issu e – b o n e i n t e r f a c e 7/19/2024

T y pe s o f R e s o lu t i o n Axial Resolution specifies how close together two objects can b e a l o n g t h e ax i s o f t he be a m , y e t s t i l l b e d ete c t ed a s t w o s e p a r a t e o b j ec t s f r eq u enc y ( w a v e l e n g t h) a f f e c t s a x i a l r es o l u t i o n 30 7/19/2024

T y pe s o f R e s o luti o n La t e r a l R e s o l ut i o n t h e a bi l i t y t o r es o l v e t w o a d j a c e n t o b j ec t s t h a t a r e p e r p e n d i cu l a r t o t he b e a m a x i s a s s ep a r a t e o b j ec t s be a m w i d t h a f f e c t s l a t e r a l r es o l u t i o n 31 7/19/2024

T y pe s o f R e s o luti o n 32 S p a t i a l R e s o l u tio n a l s o c a l l ed D e t a i l R es o l u t i o n t he c o mb i n a t i o n o f A X I A L a nd L A T E R A L resolution s o m e c us t o me r s m a y us e t h i s te r m 7/19/2024

T y pe s o f R e s o lu t i o n Contrast Resolution – t he a b i l i t y t o r e s o lv e t w o a d j a c e nt o b j e c t s o f s i m i l a r i n te ns i t y / r ef l ec t i v e p r o pe r ti es a s s e p a r a t e o b j e c t s 33 7/19/2024

T y pe s o f R e s o luti o n T e m p o r a l R e s o l u t i o n t h e a bi l i t y t o a c c u r a te l y l o c a t e t he p o s i t i o n o f mo v i ng s t r u c t u r e s a t p a r t i c u l a r i ns t a n t s i n t i me a l s o kn o w n a s f r a m e r a t e VERY IMPORTANT IN CARDIOLOGY 34 7/19/2024

W h a t d e term i n e s h o w f a r u l t r a s o u nd w a v es c a n t r a v e l ? 35 T he FR E Q U E N CY o f t h e t r a n s d u c e r T he H I G H E R t h e f r e q u en c y , t h e LE S S i t c a n penetrate T he L O W ER t h e f r e q u enc y , t h e D E E P ER i t c a n penetrate Attenuation is directly related to frequency The frequency of a transducer is labeled in Megahertz (MHz) 7/19/2024

F r e que n c y v s . R e s o lut i o n 36 T h e f r e q u e n c y a l s o a f f e c t s the Q U A L I T Y o f t h e u l t r a s o u n d i m a g e T h e H I G H ER t he f r eq u e n c y , t he B E T T ER t he resolution T h e L O W ER t h e f r e q u en c y , t he L E SS t h e resolution 7/19/2024

F r e que n c y v s . R e s o lut i o n 37 A 1 2 M H z tr a n s d u c e r h a s v e r y g o o d r e s o l u tio n , but c a nn o t p e n e tr a te v e r y d e e p i n to t h e b o d y A 3 M H z tr a n s d u c e r c a n p e ne tr a te d e e p i n to t h e b o d y , b u t t h e r e s o l u t i o n i s n o t a s g o o d a s t h e 1 2 M H z 7/19/2024

H o w i s a n i m a g e f o r m e d o n t h e m o n i t o r ? 38 T he a m p l i t u d e o f e a c h r e f l e c t ed w a v e i s r e p r es e n t ed b y a d o t The position of the dot represents the depth from w h i c h t he ec ho i s r e c e i v e d The brightness of the dot represents the strength o f t h e r e t u r n i n g e c ho These dots are combined to form a complete image 7/19/2024

P o s i t i o n o f R e f l e c t e d E c h o e s 39 H o w d o e s t he s y s t em k n o w t he d e p t h o f t he reflection? TIMING The system calculates how long it takes for the echo to return t o the tr a n s d u c er T he v el o c i t y i n ti s s u e i s a s s umed co n s t a nt a t 1540m / s ec V e l o c i t y = Di s t a nc e x T i me 2 7/19/2024

R e f l e c te d E c ho e s 40 S t r o n g R e f l e c t i o n s = W h i t e d o t s Pericardium, calcified structures,diaphragm W e a k er R ef l ec ti o n s = G r e y d o t s Myocardium, valve tissue, vessel walls,liver N o R e f l e c t i o n s = B l a c k d o t s Intra-cardiac cavities,gall bladder 7/19/2024

Transducer The transducer probe generates and receives sound waves using a principle called the  piezoelectric effect. In the probe, there are one or more quartz crystals called  piezoelectric crystals . When an electric current is applied to these crystals, they change shape rapidly. The rapid shape changes or vibrations, of the crystals produce sound waves that travel outward. Conversely, when sound or pressure waves hit the crystals, they emit electrical currents. Therefore, the same crystals can be used to send and receive sound waves.