Reference Elsaraiti , M., & Merabet , A. (2022). Solar power forecasting using deep learning techniques. IEEE access.
Kim, S. G., Jung, J. Y., & Sim, M. K. (2019). A two-step approach to solar power generation prediction based on weather data using machine learning. Sustainability.
Lee, C. H., Yang, H. C., & Ye, G. B. (2021). Predicting the performance of solar power generation using deep learning methods. Applied Sciences. Sedai , A., Dhakal , R., Gautam , S., Dhamala , A., Bilbao, A., Wang, Q., … & Pol, S. (2023). Performance analysis of statistical, machine learning and deep learning models in long-term forecasting of solar power production. Forecasting.
Chang, R., Bai, L., & Hsu, C. H. (2021). Solar power generation prediction based on deep learning. Sustainable energy technologies and assessments. AlKandari , M., & Ahmad, I. (2024). Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics. Anuradha , K., Erlapally , D., Karuna , G., Srilakshmi , V., & Adilakshmi , K. (2021). Analysis of solar power generation forecasting using machine learning techniques.
Phan, Q. T., Wu, Y. K., Phan, Q. D., & Lo, H. Y. (2022). A novel forecasting model for solar power generation by a deep learning framework with data preprocessing and postprocessing . IEEE Transactions on Industry Applications. Moosa , A., Shabir , H., Ali, H., Darwade , R., & Gite , B. (2018, June). Predicting solar radiation using machine learning techniques. In 2018 second international conference on intelligent computing and control systems (ICICCS).