Presentation-Slide-Artificial-Inteligence-1673-1698-PUC-2022.pdf

AnikNath5 10 views 13 slides May 19, 2024
Slide 1
Slide 1 of 13
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13

About This Presentation

The genetic algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order to produce offspring of the next generation.


Slide Content

PRESENTATION ON
GENETIC ALGORITHM
Submitted By
ID -1803510201673
ID -1803510201698
ID -1803510201667

Presentation Outline
Introduction
About Phases
Working Principle
Numerical Example
Conclusion

Introduction to Genetic Algorithm
Geneticalgorithmreflectstheprocessofnaturalselectionwherethefittestindividuals
areselectedforreproductioninordertoproduceoffspringofthenextgeneration.
Used:Inreal-lifeapplicationssuchas
•datacenters
•electroniccircuitdesign
•code-breaking
•imageprocessingand
•artificialcreativity.

Five phases a genetic algorithm.
1.Initial population
2.Fitness function
3.Selection
4.Crossover
5.Mutation

Working Principle
Initialpopulation:Thisalgorithmstartswithgenerationofapopulation.

Working Principle
FitnessFunction:Thisisthefunctionthatdeterminesthefitnessofanindividual.
Selection:Twopairsofindividuals(parents)areselectedbasedontheirfitnessscores…

Working Principle
Crossover:Crossoveristhemostsignificantphaseinageneticalgorithm.Forexample
Offspring NewOffspring

Working Principle
Mutation:Incertainnewoffspringformed,someoftheirgenescanbesubjectedtoamutationwitha
lowrandomprobability.
Termination:Thealgorithmterminatesifthepopulationhasconverged.

Numerical Example
Maximizethefunctionf(x)=x^2.
Step1:encoding
Step2:populationsize
Step3:initialpopulation
0
31 11111
00000
n = 4
13, 24, 8, 19

Numerical Example
Step4:Selectparentalchromosomes
String
No.
Initial
population
X
Value
F(x)= x^2 Probability
Count
F(x)/total
Expected
Count
Actual
value
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Total = 1170
Average= 292.5
T. P =1 T. Ec= 4

Numerical Example
Step:5Crossoverandmutation
Cross pointNewChildren
Parental Combination 1String21 1 0 0 01 1 0 0 1
String10 1 1 0 10 1 1 0 0
Cross pointNewChildren
Parental Combination 2String21 1 0 0 01 1 0 1 1
String11 0 0 1 11 0 0 0 0

Numerical Example
Step:5Evaluatingnewspring
Thus,inherentlythenewpopulationisbetterthanthepreviousoneleadingtoa
bettersolution.
StringnoOffspringX valueF(x) value
1 01100 12 144
2 11001 25 625
3 11011 27 729
4 10000 10 256

THANK YOU
For your
ATTENTION!