The genetic algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order to produce offspring of the next generation.
Size: 596.07 KB
Language: en
Added: May 19, 2024
Slides: 13 pages
Slide Content
PRESENTATION ON
GENETIC ALGORITHM
Submitted By
ID -1803510201673
ID -1803510201698
ID -1803510201667
Presentation Outline
Introduction
About Phases
Working Principle
Numerical Example
Conclusion
Five phases a genetic algorithm.
1.Initial population
2.Fitness function
3.Selection
4.Crossover
5.Mutation
Working Principle
Initialpopulation:Thisalgorithmstartswithgenerationofapopulation.
Working Principle
FitnessFunction:Thisisthefunctionthatdeterminesthefitnessofanindividual.
Selection:Twopairsofindividuals(parents)areselectedbasedontheirfitnessscores…
Working Principle
Crossover:Crossoveristhemostsignificantphaseinageneticalgorithm.Forexample
Offspring NewOffspring
Working Principle
Mutation:Incertainnewoffspringformed,someoftheirgenescanbesubjectedtoamutationwitha
lowrandomprobability.
Termination:Thealgorithmterminatesifthepopulationhasconverged.
Numerical Example
Maximizethefunctionf(x)=x^2.
Step1:encoding
Step2:populationsize
Step3:initialpopulation
0
31 11111
00000
n = 4
13, 24, 8, 19
Numerical Example
Step4:Selectparentalchromosomes
String
No.
Initial
population
X
Value
F(x)= x^2 Probability
Count
F(x)/total
Expected
Count
Actual
value
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Total = 1170
Average= 292.5
T. P =1 T. Ec= 4