Principle stresses and planes

PRAJWALSHRIRAO1 3,244 views 26 slides Feb 11, 2017
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Principal Stresses
and Planes


Slide Content

Topic :- principal STreSSeS
and planeS

7.1 Introduction
General State of Stress
3 normal stresses
3 shearing stresses -- t
xy
, t
yz
, and t
zx
-- s
x
, s
y
, and s
z
Goals: determine:
1. Principal Stresses
2. Principle Planes
3. Max. Shearing Stresses

2-D State of Stress
Plane Stress condition
Plane Strain condition
A. Plane Stress State:
B. Plane Stress State:
s
z
= 0, t
yz
= t
xz
= g
yz
= g
xz
= 0
e
z
¹ 0, t
xy
¹ 0
e
z
= 0, t
yz
= t
xz
= g
yz
= g
xz
=
0
s
z
¹ 0, t
xy
¹ 0

Examples of Plane-Stress Condition:

Max. s
x
& s
y

Max. t
xy

(Principal stresses)

7.2 Transformation of Plane Stress

0
0
' ': ( cos )cos ( cos )sin
( sin )sin ( sin )cos
x xyx x
y xy
F A A A
A A
s s q q t q q
s q q t q q
S = D - D - D
- D - D =
0
0
' ' ': ( cos )sin ( cos )cos
( sin )cos ( sin )sin
x xyy x y
y xy
F A A A
A A
s s q q t q q
s q q t q q
S = D + D - D
- D + D =

2 2
2
' cos sin sin cos
x y xyx
s s q s q t q q= + +
2 2
' '( )sin cos (cos sin )
x y xyx y
t s s q q t q q=- - + -
2 2
2 2 2sin sin cos , cos cos sinq q q q q q= = -
2 21 2 1 2
2 2
cos cos
cos , sin
q q
q q
+ -
= =
After rearrangement:
(7.1)
(7.2)
Knowing

2 2
2 2
' cos sin
x y x y
xyx
s s s s
s q t q
+ -
= + +
2 2
2
' ' sin cos
x y
xyx y
s s
t q t q
-
=- +
2 2
2 2
' cos sin
x y x y
xyy
s s s s
s q t q
+ -
= - -
'
ys
Eqs. (7.1) and (7.2) can be simplified as:
(7.5)
(7.6)
Can be obtained by replacing q with (q + 90
o
) in Eq.
(7.5)
(7.7)

1. s
max
and s
min
occur at t = 0
2. s
max
and s
min
are 90
o
apart. t
max
and t
min
are 90
o
apart.
3. t
max
and t
min
occur half way between s
max
and s
min

7.3 Principal Stresses: Maximum Shearing Stress
Since s
max
and s
min
occur at t
x’y’
= 0, one can set Eq. (7.6) = 0
2 2 0
2
' ' sin cos
x y
xyx y
s s
t q t q
-
=- + =
2
2tan
xy
x y
t
q
s s
=
-
1 2
2 2
2
2
4
/
( )/
cos
( ) /
x y
x y xy
s s
q
s s t
-
= ±
é ù- +
ë û
1 2
2 2
2
4
/
sin
( ) /
xy
x y xy
q
s s t
t

é ù- +
ë û
(7.6)
It follows,
Hence,
(a)
(b)

Substituting Eqs. (a) and (b) into Eq. (7.5) results in s
max
and
s
min
:
2 2
2 2
max,min
( )
x y x y
xy
s s s s
s t
+ -
= ± +
2

x y
ave
s s
s
+
=
2
2
( )
x y
xy
R
s s
t
-
= +
This is a formula of a circle with the center at:
and the radius of the circle as:
(7.14
)
(7.10
)

Mohr’s Circle

The t
max
can be obtained from the Mohr’s circle:
Since t
max
is the radius of the Mohr’s circle,
2
2
max( )
( )
x y
in plane xy
R
s s
t t
-
-
= = +

Since t
max
occurs at 2q = 90
o
CCW from s
max
,
Hence, in the physical plane t
max
is q = 45
o
CCW from s
max
.
¨¨ In the Mohr’s circle, all angles have been doubled.

7.4 Mohr’s Circle for Plane Stress

Sign conventions for shear
stresses:
CW shear stress = Å and is plotted above the s-
axis,
CCW shear stress = ⊝ and is plotted below the s-
axis

7.5 General State of Stress – 3-D
cases
Definition of Direction Cosines:
cos , cos , cosl
x x y y z z
m nl q l q l q= = = = = =
2 2 2 2 2 2
1 1 l
x y z or m nl l l+ + = + + =
with

0
0
: ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
n n x x x xy x y xz x z
yx y z y y y yz y z
zx z x zy z y z z z
F A A A A
A A A
A A A
s s l l t l l t l l
t l l s l l t l l
t l l t l l s l l
S = D - D - D - D
- D - D - D
- D - D - D =

Dividing through by DA and solving for s
n
, we have
2 2 2
2 2 2
n x x y y z z xy x y yz y z zx z x
s s l s l s l t l l t l l t ll= + + + + +
2 2 2
= + +
n a a b b c cs s l sl sl
(7.20
)
We can select the coordinate axes such that the RHS of Eq.
*7.20) contains only the squares of the l’s.
(7.21
)
Since shear stress t
ij
= o, s
a
,
s
b
, and s
c
are the three
principal stresses.

7.6 Application of Mohr’s Circle to
the 3-D Analysis of Stress
s
A
> s
B >
s
C
1 1
2 2
max max min A C
t s s s s= - = -
= radius of the Mohr’s circle
Tags