Principles of GIS unit 1

6,731 views 65 slides May 12, 2021
Slide 1
Slide 1 of 65
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65

About This Presentation

Mumbai University, T.Y.B.Sc.(I.T.), Semester VI, Principles of Geographic Information System, USIT604, Discipline Specific Elective Unit 1: Introduction to GIS


Slide Content

Prof. Sanjana Khemka
Prahladrai Dalmia Lions College

Unit 1:Introduction to GIS
ThenatureofGIS
Therealworldandrepresentationsofit
GeographicInformationandSpatialDatabase
ModelsandRepresentationsoftherealworld
GeographicPhenomena
ComputerRepresentationsofGeographicInformation
OrganizingandManagingSpatialData
TheTemporalDimension

What is GIS?
Gstandsforgeographic,soGIShassomething
todowithgeography.
Istandsforinformation,soGIShassomething
todowithinformation,namelygeographic
information.
Sstandsforsystem,soGISisanintegrated
systemofgeographyandinformationtied
together.

What is GIS?
•Acomputersystemfor
-collecting,
-storing,
-manipulating,
-analyzing,
-displaying,and
-querying
geographicallyrelated
information.

Definitions of GIS
GISisaparticularformofInformationSystemapplied
togeographicaldata.
GISisacomputerbasedtoolthatanalyzes,stores,
manipulatesandvisualizesgeographicinformationon
amap.
AGeographicInformationSystemisasystemof
computersoftware,hardwareanddata,andthe
personnelthatmakeitpossibletoenter,manipulate,
analyze,andpresentinformationthatistiedtoa
locationontheearth’ssurface.

AGISisacomputer-basedsystemthatprovidesthe
followingfoursetsofcapabilitiestohandle
georeferenceddata:
1.Datacaptureandpreparation
2.Datamanagement,includingstorageandmaintenance
3.Datamanipulationandanalysis
4.Datapresentation

Data capture and preparation
Datacaptureandinputisdoneusingexistingdataor
bycreatingnewdata.
Newdatacanbecreatedfromsensedimages,GPS
devices,fieldsurvey,userinputandtextfilesetc.

Data Management
Datamanagementreferstothestorageand
maintenanceofthedata.
Dataisusuallystoredintablesinrowandcolumn
format.
Datamanipulationincludesdataverification,attribute
datamanagement,insertion,updation,deletionand
retrievalindifferentforms.

Data Manipulation and analysis
Oncethedatahasbeencollectedandorganized,analysis
canbedoneusingdifferentanalysistools.
DataPresentation
Afterthedataisgatheredandstored,itispreparedfor
producingoutput.
Thedatapresentationphasedealswithputtingitall
togetherintoaformatthatcommunicatestheresultofdata
analysisinthebestpossibleway.
Foreffectivepresentation,followingpointshouldbekept
inmind.Whatismessagewewanttoportray,whothe
audienceis,whatkindofpresentationmediumisusedand
whattechniquesareavailableforrepresentation.

GI System
GISystemisacombinationofafunctionalGIS
softwareandhardwarecomponents,userstoworkon
softwareandinfrastructuresupport.
Itisspecializedsoftwaretofacilitateinput,process,
transformandanalyzegeospatialdata.

GIS Application
GISsoftwarecanbeappliedtomanydifferenttomany
differentapplications.

GIS Applications
Naturalresource-based
wildlifehabitatanalysis,migrationroutesplanning
NaturalResourceManagement
LandUsePlanning
NaturalHazardassessment
Environmentalimpactanalysis(EIA)
Groundwatermodelingandcontaminationtracking
Streetnetwork-based
addressmatching-findinglocationsgivenstreetaddresses
vehicleroutingandscheduling
locationanalysis,siteselection
developmentofevacuationplans

Landparcel-based
Zoning,subdivisionplanreview
Landrecordmanagement
environmentalimpactstatements
waterqualitymanagement
maintenanceofownership
Facilitiesmanagement
locatingundergroundpipes,cables
balancingloadsinelectricalnetworks
planningfacilitymaintenance
Others
Crimeanalysis
Marketanalysis
Locationbasedservices
Incarnavigationsystem

Who Uses GIS?
PlanningStrategies
PoliceandLawEnforcementAgencies
Foresters
Industry
EnvironmentalEngineers
RealEstateProfessionals
TelecommunicationsProfessionals
EmergencyResponseOrganizations
LocalandFederalGovernment
Health
Transportation
Geographers
MarketDevelopers

GIS components
Computersystem
Hardware
Software
Geographicdata
Peopletocarryoutvariousmanagementandanalysis
tasks

Hardware–itisthecomputeronwhichaGISoperates
Software–itprovidesfunctionsandtoolsneededtoinput
andstore,query,performsanalysis,anddisplays
geographicinformationintheformofmapsorreports.All
GISsoftwarepackagesrelyonanunderlyingdatabase
managementsystem(DBMS)forstorageandmanagement
ofthegeographicandattributedata.

Data-Dataisoneofthemostimportant,andoften
mostexpensive,componentsofaGIS.
ItisenteredintoaGISusingatechniquecalled
digitizing.
Digitizingisdonebytracingthelocation,pathor
boundaryofgeographicfeatureseitheronacomputer
screenusingascannedmapinthebackground,ora
papermapthatisattachedtoadigitizingtablet.
Evendataisavailableforfreeorforpurchasefromthe
dataproviderorfromaspatialdataclearinghouse.

The real world and representations of it
OneofthemainusesofGISisasatooltohelpus
makedecisions.
Todosoweneedtorestrictourselvesto‘somepart’of
therealworldsimplybecauseitcannotberepresented
completely.
Itwillallowustoenterandstoredata,analyzethedata
andtransferittohumansortoothersystems.

MODELS
Amodelisarepresentationofwholeorsomepartof
therealworldhavingcertaincharacteristicsin
commonwiththerealworld.
Itisusedtostudyandoperateonthemodelitself
insteadoftherealworldinordertotestwhathappens
undervariousconditions,andhelpusanswer‘whatif’
analysisbychangingthedataoraltertheparameters
ofthemodel,andinvestigatetheeffectsofthe
changes.
Modelsareofdifferenttypes
Staticmodel-itrepresentasinglestateofaffairsatany
pointoftime.
Dynamicmodel-itisusedforsuchsystems,

Static model and Dynamic model
Itrepresentasinglestateofaffairsatanypointoftime.
Mostmapsanddatabasescanbeconsideredstaticmodels.
Usually,developmentsorchangesintherealworldarenot
easilyrecognizedinthesemodels
Dynamicmodels–itemphasizechangesthathavetaken
place,aretakingplaceormaytakeplacesometimeinthe
future.
Dynamicmodelsareinherentlymorecomplicatedthan
staticmodels,andusuallyrequiremuchmore
computation.
Simulationmodelsareanimportantclassofdynamic
modelsthatallowthesimulationofrealworldprocesses.

Models as representations
Models—asrepresentations—comeinmanydifferent
forms.
Themostfamiliarmodelisthatofamap.Amapisa
miniaturerepresentationofsomepartoftherealworld.
Papermapsarethemostcommon,butdigitalmapsalso
exist.
Databasesareanotherimportantclassofmodels
Digitalmodelshaveenormousadvantagesoverpaper
models(suchasmaps).
Theyaremoreflexible,andthereforemoreeasilychanged
forthepurposeathand.
Applicationmodels-itrefertomodelswithaspecific
application

Maps
Amapisagraphicrepresentationatacertainlevelof
detail,whichisdeterminedbythescale,having
physicalboundariesandfeatures.
Mapisaminiaturerepresentationofsomeportofthe
re
Cartography,isthescienceandartofmapmaking,
functionsasaninterpreter,translatingrealworld
phenomenaintocorrect,clearandunderstandable
representationsforouruse.
Mapsarealsoadatasourceforotherapplications,
includingthedevelopmentofothermaps.

Database
Adatabaseisarepositoryforstoringlargeamountsofdata
Adatabaseoffersanumberoftechniquesforstoringand
analyzingdata.
Adatabasecanbeusedbymultipleusersatthesame
time—i.e.itallowsconcurrentuse
Adatabaseallowstheimpositionofrulesonthestored
data
Adatabaseoffersaneasytousedatamanipulation
language
Databasescanstorealmostanykindofdata

Spatial databases
Spatialdatabasealsoknownasgeo-databasecanstore
representationsofrealworldgeographicphenomena
foruseinaGIS.
Itstoresaboutspatialreferencessystems,andsupports
allkindsofanalysisthataregeographicinnature,such
ascomputationofdistanceandarea.
Itmayhavepoint,line,andareaorimage
characteristics.

Spatial Analysis
Spatialanalysisisthegeneraltermforallmanipulationsof
spatialdatacarriedouttoimproveone’sunderstandingof
thegeographicphenomenathatthedatarepresents.
Itinvolvesquestionsabouthowthedatainvariouslayers
mightrelatetoeachother,andhowitvariesoverspace
Theaimofspatialanalysisisusuallytogainabetter
understandingofgeographicphenomenathrough
discoveringpatternsthatwerepreviouslyunknowntous,
ortobuildargumentsonwhichtotakeimportant
decisions.
GISfunctionsforspatialanalysisaresimpleandeasy-to-
use,muchmoresophisticated,anddemandhigherlevelsof
analyticalandoperatingskills

Models and representations of the real world
Modelingisheprocessofproducinganabstractionof
therealworldtoobserveandstudyiteasily.
Itistheprocessofrepresentingkeyaspectsofthereal
worldusingcomputersystem.
Theserepresentationaremadeupofspatialdata,
storedincomputermemory.
Modelingbeginswiththeprocessoftranslatingthe
relevantaspectsoftherealworldintoacomputer
representation.
Itcanbedoneusingdirectobservationsusingsensors,
anddigitizingthesensoroutputforcomputerusageor
byindirectmeans.

world phenomena inside
a GIS to build models or
simulations.
Representing real world Phenomena inside GIS

Geographic phenomena
Ageographicphenomenonissomethingthat
❖Canbenamedordescribed,
❖Canbegeoreferenced,and
❖Canbeassignedatime(interval)atwhichitis/was
present.
Forinstance,inwatermanagement,theobjectsofstudymightberiverbasins,
measurementsofactualevaporation,groundwaterlevels,irrigationlevels,
waterbudgetsandmeasurementsoftotalwateruse.
Aspatialphenomenaoccurinatwo-orthree-dimensionalEuclideanspace.
Euclideanspacecanbeinformallydefinedasamodelofspaceinwhich
locationsEuclideanspacearerepresentedbycoordinates—(x,y)in2D;(x,y,z)
in3D—anddistanceanddi-rectioncandefinedwithgeometricformulas.Inthe
2Dcase,thisisknownastheEuclideanplane

Types of geographic phenomena
InordertorepresentaphenomenoninaGIS,itrequiresto
statewhatitis,andwhereitis.
Somephenomenaexistsessentiallyeverywhereinthe
studyarea,whileothersonlydosoincertainlocalities.
GeographicFields
A(geographic)fieldisageographicphenomenonfor
which,foreverypointinthestudyarea,avaluecanbe
determined.Exairtemperature,barometricpressureand
elevation.
Afieldisamathematicalfunctionfthatassociatesa
specificvaluewithanypositioninthestudyarea.
If(x,y)isapositioninthestudyarea,thenf(x,y)standsfor
thevalueofthefieldatlocality(x,y).

Fieldscanbediscreteorcontinuous
Inacontinuousfield,theunderlyingfunctionis
assumedtobe‘mathematicallysmooth’,meaningthat
thefieldvaluesalonganypaththroughthestudyarea
donotchangeabruptly,butonlygradually.
Example-airtemperature,barometricpressure,
soilsalinityandelevation
Discretefieldsdividethestudyspaceinmutually
exclusive,boundedparts,withalllocationsinonepart
havingthesamefieldvalue.
Example-soiltype,landusetype,croptypeornatural
vegetationtype

Data types and values
Differentkindsofdatavalueswhichwecanusetorepresent
geographic‘phenomena’
1.Nominaldatavalues–itprovideanameoridentifiersothat
wecandiscriminatebetweendifferentvalues.Thiskindofdata
valueiscalledcategoricaldata
2.Ordinaldatavaluesaredatavaluesthatcanbeputinsome
naturalsequencebutthatdonotallowanyothertypeof
computation.Ex-Householdincome‘low’,‘average’or‘high’
3.Intervaldatavaluesarequantitative,inthattheyallowsimple
formsofcomputationlikeadditionandsubtraction.Interval
datahasnoarithmeticzerovalue,anddoesnotsupport
multiplicationordivision
4.Ratiodatavaluesallowmost,ifnotall,formsofarithmetic
computation.Rationaldatahaveanaturalzerovalue,and
multiplicationanddivisionofvaluesarepossibleoperators

Geographic Objects
Itpopulatethestudyareaandareusuallywell
distinguished,discrete,andboundedentities.
Positionofgeographicobjectsisdeterminedbya
combinationofthefollowingparameters
Location
Shape
Size
orientation

Boundaries
Boundaryisrequiredwhereshapeand/orsizeof
contiguousareasmatter
Boundaryisusedforgeographicobjectandfordiscrete
geographicfield.
Acrispboundaryisonethatcanbedeterminedwith
almostarbitraryprecision,dependentonlyonthedata
acquisitiontechniqueapplied.
Fuzzyboundariescontrastwithcrispboundariesinthat
theboundaryisnotapreciseline,butratheritselfanarea
oftransition.
Crispboundariesaremorecommoninman-made
phenomena,whereasfuzzyboundariesaremorecommon
withnaturalphenomena.

Computer representations of geographic information
Geographicphenomenoncanberepresentedincomputermemoryas
Storeasmany(location,elevation)observationpairsaspossible,or
Findasymbolicrepresentationoftheelevationfieldfunction,asa
formulainxandy—like(3.0678x
2
+20.08x-7.34y)orso—whichcan
beevaluatedtogiveustheelevationatanygiven(x,y)location.
Bothoftheseapproacheshavetheirdrawbacks
Thefirstsuffersfromthefactthat,thereareinfinitelymanylocations.
Insecondapproach,itisextremelydifficulttoderivefunctionforlarger
areas.
InGISs,acombinationofbothapproachesistaken.
Westoreafinite,butintelligentlychosensetof(sample)locationswith
theirelevation.
Interpolationfunctionallowsustoinferareasonableelevationvalue
forlocationsthatarenotstored.
Interpolationismadepossiblebyaprinciplecalledspatial
autocorrelation
fieldsareusuallyimplementedwithatessellationapproach,and
objectswitha(topological)vectorapproach

Regular tessellations
Atessellation(ortiling)isapartitioningofspaceinto
mutuallyexclusivecellsthattogethermakeupthe
completestudyspace.
Witheachcell,some(thematic)valueisassociatedto
characterizethatpartofspace.
Inallregulartessellations,thecellsareofthesame
shapeandsize,andthefieldattributevalueassigned
toacellisassociatedwiththeentireareaoccupiedby
thecell.

Raster
Arasterisasetofregularlyspaced(andcontiguous)
cellswithassociated(field)values.Theassociated
valuesrepresentcellvalues,notpointvalues.
Thesizeoftheareathatasinglerastercellrepresents
iscalledtheraster’sresolution.
Toimproveonthiscontinuityofcell
Makethecellsizesmaller,soastomakethe‘continuity
gaps’betweenthecellssmaller
Assumethatacellvalueonlyrepresentselevationfor
onespecificlocationinthecell.

Advantage and disadvantage of
Regular Tesselations
Regulartessellationsknowhowtheypartitionspace,
andcanmakecomputationsspecifictothis
partitioning.Thisleadstofastalgorithms
Anobviousdisadvantageisthattheyarenotadaptive
tothespatialphenomenonwewanttorepresent.
Thecellboundariesarebothartificialandfixed:they
mayormaynotcoincidewiththeboundariesofthe
phenomenaofinterest.
anotherdisadvantageisdatabasesizeinbigand
increaseswiththeincreaseinresolution.

Irregular tessellations
Irregulartessellationsarepartitionsofspaceinto
mutuallydisjointcells,butthecellsmayvaryinsize
andshape,allowingthemtoadapttothespatial
phenomenathattheyrepresent
Irregulartessellationsaremorecomplexthanthe
regularones,buttheyarealsomoreadaptive.
Itleadstoareductionintheamountofmemoryused
tostorethedata

Quadtrees

Itisbasedonaregulartessellationofsquarecells,but
takesadvantageofcaseswhereneighbouringcells
havethesamefieldvalue,sothattheycantogetherbe
representedasonebiggercell.
Thequadtreethatrepresentsarasterisconstructedby
repeatedlysplittinguptheareaintofourquadrants,
whicharecalledNW,NE,SE,SW.
Thisprocedurestopswhenallthecellsinaquadrant
havethesamefieldvalue.Theprocedureproducesan
upside-down,tree-likestructure,knownasaquadtree.
Inmainmemory,thenodesofaquadtreeare
representedasrecords.
Quadtreesareadaptivebecausetheyapplythespatial
autocorrelationprinciple,i.e.thelocationsthatare
nearinspacearelikelytohavesimilarfieldvalues.

Vector representations
Tessellationsprovideageoreferenceofthelowerleft
corneroftheraster,plusanindicatoroftheraster’s
resolution
Vectorrepresentations,explicitlyassociate
georeferenceswiththegeographicphenomena.
Ageoreferenceisacoordinatepairfromsome
geographicspace,andisalsoknownasavector.

TIN (Triangulated Irregular Network)
Itisarepresentationforgeographicfieldsthatcanbe
consideredahybridbetweentessellationsandvector
representations.
ATINisavectorrepresentation
ItisacommonlyuseddatastructureinGISsoftware
Itisoneofthestandardimplementationtechniques
fordigitalterrainmodels,butitcanbeusedto
representanycontinuousfield.
TheprinciplesbehindaTINaresimple.Itisbuiltfrom
asetoflocationsforwhichwehaveameasurement,
forinstanceanelevation.

Delaunay triangulation
Itisanoptimaltriangulation.
Firstpropertyistrianglesareasequilateral(‘equal-
sided’)astheycanbe,giventhesetofanchorpoints.
Thesecondpropertyisthatforeachtriangle,the
circumcirclethroughitsthreeanchorpointsdoesnot
containanyotheranchorpoint.

Point representations
Pointsaredefinedassinglecoordinatepairs(x,y)in
2D,orcoordinatetriplets(x,y,z)in3D.
Pointsareusedtorepresentobjectsthatarebest
describedasshape-andsize-less,zero-dimensional
features.

Line representations
Linedataareusedtorepresentone-dimensionalobjectssuchas
roads,railroads,canals,riversandpowerlines.
Thetwoendnodesandzeroormoreinternalnodesorvertices
definealine.
Othertermsfor’line’thatarecommonlyusedinsomeGISsare
polyline,arcoredge.
Anodeorvertexislikeapointbutitonlyservestodefinethe
line,andprovideshapeinordertoobtainabetterapproximation
oftheactualfeature.
Thestraightpartsofalinebetweentwoconsecutiveverticesor
endnodesarecalledlinesegments.
ManyGISsstorealineasasimplesequenceofcoordinatesofits
endnodesandvertices,assumingthatallitssegmentsare
straight.

Area representations
Areasastheyarerepresentedbytheirboundaries.
Eachboundaryisacyclicsequenceoflinefeatures;
Eachlineasisasequenceoftwoendnodes,within
betweenzeroormorevertices.
Areafeatureisrepresentedbycollectionofarc/node
structurethatdeterminesapolygonasthearea’s
boundary.

Topology and spatial relationships
Topologyreferstothespatialrelationshipsbetween
geographicalelementsinadatasetthatdonotchange
underacontinuoustransformation.
AreaEisstillinsideareaD,Theneighbourhood
relationshipsbetweenA,B,C,D,andEstayintact,and
theirboundarieshavethesamestartandendnodes
Theareasarestillboundedbythesameboundaries,only
theshapesandlengthsoftheirperimetershave
changed.

Topological relationships
Topologicalrelationshipsarebuiltfromsimple
elementsintomorecomplexelements:nodesdefine
linesegments,andlinesegmentsconnecttodefine
lines,whichinturndefinepolygons.
Themathematicalpropertiesofthegeometricspace
usedforspatialdatacanbedescribedasfollows:
Thespaceisathree-dimensionalEuclideanspacewhere
foreverypointwecandetermineitsthree-
dimensionalcoordinatesasatriple(x,y,z)of
realnumbers

Thespaceisametricspace,wecanalwayscomputethe
distancebetweentwopointsaccordingtoagiven
distancefunction.
Thespaceisatopologicalspace,foreverypointinthe
spacewecanfindaneighborhoodarounditthatfully
belongstothatspaceaswell.
Interiorandboundaryarepropertiesofspatialfeatures
thatremaininvariantundertopologicalmappings.

Wecandefinewithinthetopologicalspace,features
thatareeasytohandleandthatcanbeusedas
representationsofgeographicobjects.
Thesefeaturesarecalledsimplicesastheyarethe
simplestgeometricshapesofsomedimension:point
(0-simplex),linesegment(1-simplex),triangle(2-
simplex),andtetrahedron(3-simplex).
Whenwecombinevarioussimplicesintoasingle
feature,weobtainasimplicialcomplex

The topology of two dimensions
Topologicalpropertiesofinteriorandboundarycanbe
usedtodefinerelationshipsbetweenspatialfeatures.
WecandefinetheinteriorofaregionRasthelargest
setofpointsofRforwhichwecanconstructadisk-like
environormentarounditthatalsofallscompletely
insideR.
TheboundaryofRisthesetofthosepointsbelonging
toRbutthatdonotbelongtotheinteriorofR,i.e.one
cannotconstructadisk-likeenvironmentaroundsuch
pointsthatstillbelongstoRcompletely.

Set theory
ConsideraspatialregionA.Ithasaboundaryandan
interior,bothseenas(infinite)setsofpoints,and
whicharedenotedbyboundary(A)andinterior(A),
respectively.
Weconsiderallpossiblecombinationsof
intersections(∩)betweentheboundaryandthe
interiorofAwiththoseofanotherregionB,andtest
whethertheyaretheemptyset(∅)ornot.
Fromtheseintersectionpatterns,wecanderiveeight
(mutuallyexclusive)spatialrelationshipsbetweentwo
regions.

AmeetsB=
interior(A)∩interior(B)=∅∧
boundary(A)∩boundary(B)=∅∧
interior(A)∩boundary(B)=∅∧
boundary(A)∩interior(B)=∅.
Theserelationshipscanbeusedinqueriesagainsta
spatialdatabase,andrepresentthe‘buildingblocks’of
morecomplexspatialqueries.

The five rules of topological consistency in
two-dimensional space

Scale and resolution
Mapscalecanbedefinedastheratiobetweenthe
distanceonapapermapandthedistanceofthesame
stretchintheterrain.
A1:50,000scalemapmeansthat1cmonthemap
represents50,000cm,i.e.500m,intheterrain.
Whenappliedtospatialdata,thetermresolutionis
commonlyassociatedwiththecellwidthofthe
tessellationapplied

Representations of geographic fields
Ageographicfieldcanberepresentedthrougha
tessellation,throughaTINorthroughavector
representation.
Rasterrepresentationofafield
Rasterrepresentsacontinuousfieldlikeelevation.
Arastercanbethoughtofasalonglistoffieldvalues

Vector representation of a field
Thistechniqueusesisolinesofthefield.
Anisolineisalinearfeaturethatconnectsthepoints
withequalfieldvalue.
Whenthefieldiselevation,wealsospeakofcontour
lines.
BothTINsandisolinerepresentationsusevectors.

Representation of geographic
objects
Itissupportedwithvectors.All,objectsareidentified
bytheparametersoflocation,shape,sizeand
orientationandmanyoftheseparameterscanbe
expressedintermsofvectors.
However,tessellationsarestillcommonlyusedfor
representinggeographicobjects

Organizing and managing spatial
data
ThemainprincipleofdataorganizationappliedinGIS
systemsisthatofaspatialdatalayer.
Aspatialdatalayeriseitherarepresentationofa
continuousordiscretefield,oracollectionofobjects

The temporal dimension
Geographicphenomenaaredynamic,theychangeover
time.
Somefeatureschangesslowly,whileotherphenomena
changeveryrapidly.
Thetemporaldimensionisofacontinuousnature.
Thereforeinordertorepresentitinacomputer,wehaveto
‘discretize’thetimedimension.
Spatiotemporaldatamodelsarewaysoforganizing
representationsofspaceandtimeinaGIS.
Themostcommontechniqueisa‘snapshot’statethat
representsasinglepointintimeofanongoingnaturalor
man-madeprocess.
Wemaystoreaseriesofthesesnapshotstatestorepresent
change

Different ‘concepts’ of time
Discreteandcontinuoustime:Timecanbe
measuredalongadiscreteorcontinuousscale.
Discretetimeiscomposedofdiscreteelements
(seconds,minutes,hours,days,months,oryears).In
continuoustime,foranytwodifferentpointsintime,
thereisalwaysanotherpointinbetween.
Validtimeandtransactiontime:Validtimeisthe
timewhenaneventreallyhappened,orastringof
eventstookplace.Transactiontime(ordatabasetime)
isthetimewhentheeventwasstoredinthedatabase
orGIS

Linear,branchingandcyclictime-Timecanbe
consideredtobelinear,extendingfromthepasttothe
present(‘now’),andintothefuture.Thisviewgivesa
singletimeline.
Branchingtime—inwhichdifferenttimelinesfroma
certainpointintimeonwardsarepossible—and
cyclictime—inwhichrepeatingcyclessuchasseasons
ordaysofaweekarerecognized,makemoresenseand
canbeuseful.
Timegranularity-granularityistheprecisionofa
timevalueinaGISordatabase
Absoluteandrelativetime-Absolutetimemarksa
pointonthetimelinewhereeventshappen
Relativetimeisindicatedrelativetootherpointsin
time

References
PrinciplesofGeographicInformationSystem–Sheth
Publication
PrinciplesofGeographicInformationSystems-An
IntroductoryTextBook–Publication-The
internationalInstituteofGeoInformationScienceand
EarthObservation