Procedimiento de verificacion de engranajes

12,937 views 17 slides Sep 13, 2015
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Procedimiento


Slide Content

PRACTICA LABORATORIO Nº 5

TEORIA DE MAQUINAS
12/05/2005 1 / 11

VERIFICACIÓN DE
ENGRANAJES

APELLIDOS:

NOMBRE:
APELLIDOS:

NOMBRE:
V4

PRACTICA LABORATORIO 5

04/02/2004 2 / 11
PRACTICA 5: Verificación de engranajes

DURACIÓN:

2 HORAS

OBJETIVO:

Se pretende que el alumno consiga realizar la verificación de engranajes rectos y helicoidales
utilizando como aparatos de medida tanto el calibre normal, como el especial para medir
engranajes.

DESARROLLO:

Método 1: Verificación con calibre normal.

a) Se procederá al cálculo del módulo del engranaje mediante la aplicación de la
siguiente fórmula:



D
e = diámetro exterior

z = número de dientes

El valor del diámetro exterior se obtiene directamente utilizando un calibre normal.

b) Se comprobará que se trata de un módulo normalizado (Anexo I).

c) A continuación y teniendo en cuenta el ángulo de presión se contrastará el valor del
módulo obtenido anteriormente con el de la siguiente fórmula:

Para
α = 14º 30’ simplificada:


Para
α = 15º simplificada:

Para
α = 20º simplificada:

Para cualquier ángulo de presión:

siendo: M = módulo Y = número de espacios N = número de dientes

α = ángulo de presión α 1 = ángulo de presión en radianes.

PRACTICA LABORATORIO 5

04/02/2004 3 / 11
c1) Dientes rectos


El valor del número de espacios C utilizado para la medición de K se obtiene de la siguiente
tabla:



c2) Dientes helicoidales

La cota real sobre “k” dientes se mide sobre una recta tangente al cilindro base. Es la distancia
entre las trazas rectilíneas de dos flancos anti-homólogos de “k dientes” consecutivos (ver
figura adjunta). Se tomará siempre como valor la media al menos de tres valores.


Medida real sobre k dientes

PRACTICA LABORATORIO 5

04/02/2004 4 / 11
Método 2: Verificación con calibre especial.

Para determinar los valores de fijación en el calibre especial (altura de cabeza = ab;
espesor = bc), éstos se han de multiplicar por el módulo utilizando la siguiente tabla:



Los valores de esta tabla son para hacer la corrección por el número de dientes, hasta 45,
siguiendo la diferencia entre la cuerda y el arco; a partir de 45 dientes, esta diferencia es
insignificante, y, por tanto, dentro de la más exigente tolerancia.




FÓRMULAS


z = número de dientes
p = paso
m = módulo
D
p =diámetro primitivo
S = cuerda
F = flecha del arco
L = altura del diente a partir del diámetro
primitivo


γ = 90 / z

S = D
p ⋅ sen γ

F = [D
p (1 – cos γ)]/2

ab = L + F

bc = S

Para dentaduras interiores, ab = L – F

γ

PRACTICA LABORATORIO 5

04/02/2004 5 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 1

Croquis:


Medidas:

Módulo, (m) =
Paso, (p) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c) =
Altura de pie, (h
p) =

Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =

Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 6 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 2

Croquis:


Medidas:

Módulo, (m) =
Paso, (p) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c) =
Altura de pie, (h
p) =

Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =

Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 7 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 3

Croquis:


Medidas:

Módulo, (m) =
Paso, (p) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c) =
Altura de pie, (h
p) =

Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =

Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 8 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 4

Croquis:


Medidas:

Módulo, (m) =
Paso, (p) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c) =
Altura de pie, (h
p) =

Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =

Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 9 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 5

Croquis:


Medidas:

Módulo, (m) =
Paso, (p) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c) =
Altura de pie, (h
p) =

Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =

Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 10 / 11
ENGRANAJE CILÍNDRI CO HELICOIDAL

Croquis:


Medidas:

Módulo aparente (m
a = Dp / z) =
Módulo real, (m
r = ma cos β) =
Paso aparente, (p
a = πDp / z) =
Paso real, (p
r = pa cos β) =
Espesor deinte, (e) =
Espacio entre dientes, (c) =
Profundidad del diente, (h) =
Altura de cabeza, (h
c = mr) =
Altura de pie, (h
p) =
Diámetro primitivo, (D
p) =
Diámetro de cabeza, (D
c) =
Diámetro de base, (D
b) =
Número de dientes, (z) =
Ángulo de presión, (
α) =
Ángulo de inclinación, (
β) =
Comentarios:

PRACTICA LABORATORIO 5

04/02/2004 11 / 11
ANEXO I

PRACTICA DE LABORATORIO Nº 5

TEORIA DE MAQUINAS
12/05/2005 1 / 6



TRAZADO DEL PERFIL
TEORICO DE UNA
RUEDA DENTADA









APELLIDOS:
NOMBRE:
V6

PRACTICA LABORATORIO 5
12/05/2005 2 / 6


PRACTICA 5: Trazado del perfil teórico de una rueda dentada

DURACIÓN:

2 HORAS

OBJETIVO

El objetivo de esta práctica es que el alumno dibuje el perfil de una rueda dentada, para
ello se reparte a cada alumno una cremallera tallada en policarbonato. Sobre esta
cremallera es posible hacer rodar sin deslizar las circunferencias primitivas de ruedas de
diferentes tamaños de tal forma que se pueda ir trazando el perfil resultante con cada
una de las ruedas. También se realizarán desplazamientos relativos entre la cremallera y
la rueda para obtener las correcciones utilizadas en el tallado real de ruedas dentadas.


































PRIMITIVA CREMALLERA
PRIMITIVAS RUEDAS
CREMALLERA

PRACTICA LABORATORIO 5
12/05/2005 3 / 6

FUNDAMETOS TEÓRICOS

Por las clases de teoría se conoce el siguiente esquema de generación de una rueda
dentada:


















La generación de esta rueda se realiza con el siguiente perfil de cremallera (m=1):

h = p/4 ha =a = 1
hf = b = 1.25 e = Π/2

PRACTICA LABORATORIO 5
12/05/2005 4 / 6
Algunos ejemplos reales de tallado de ruedas dentadas son:

PRACTICA LABORATORIO 5
12/05/2005 5 / 6

A continuación se presentan diferentes mecanizados pero con corrección, se puede
observar como el diente es más robusto al aumentar la corrección positiva.

PRACTICA LABORATORIO 5
12/05/2005 6 / 6

DESCRIPCION DE LA PRÁCTICA


Dada la cremallera de módulo 4 y longitud 200mm, se tallarán 4 ruedas dentadas de
M = 4, de diferente número de dientes y por tanto de diferentes diámetros primitivos, tal
y como aparecen en el siguiente cuadro, primero con corrección y posteriormente
corregidas, esto se consigue con un desplazamiento relativo entre la primitiva de la
cremallera y la cremallara:



CREMALLERA
M 4 PASO 12,5663706 hf 5
LONGITUD 250 Z 19,8943679
RUEDA 10
M4
Z 10DP 40DESARROLL
O 125,664
ANG PRES 20 DCABEZA 48
DBSE 37,5876937
RUEDA 12 X 0,3 DP' 41,2
M4
Z 12DP 48DESARROLL O150,7968
ANG PRES 20 DCABEZA 56
DBSE 45,1052324
RUEDA 14 X 0,3 DP' 49,2
M4
Z 14DP 56DESARROLL O175,9296
ANG PRES 20 DCABEZA 64
DBSE 52,6227711
RUEDA 16 X 0,3 DP' 57,2
M4
Z 16DP 64DESARROLL O201,0624
ANG PRES 20 DCABEZA 72
DBSE 60,1403099
X 0,3 DP' 65,2




Cada alumno deberá entregar 8 ruedas correctamente dibujadas, 4 sin corregir y 4
corregidas.
Tags