Properties of z transform day 2

vijayanandKandaswamy 401 views 53 slides Jul 28, 2020
Slide 1
Slide 1 of 53
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53

About This Presentation

UNIT II DISCRETE TIME SYSTEM ANALYSIS 6+6
Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform,application to discrete systems - Stability analysis, frequency response –Convolution – Discrete Time Fourier transform , magnitude and phase representa...


Slide Content

WEBINAR ON DISCRETE TIME SYSTEM
ANALYSIS

Day 2 – 21/7/2020


1
K.Vijay Anand - Associate Professor

Department of Electronics and Instrumentation Engineering

R.M.K Engineering College

•Unit step Function
2

Ex. 3 Find the z-transform of [n -1]

z
X ( z)   [n 1] z
n
 z
1

1
n
with an ROC consisting of the entire z - plane except z  0 .

Ex. 4 Find the z-transform of  [n +1]

X ( z)   [n 1] z
n
 z
n
with an ROC consisting of the entire z - plane except z  ,
i.e., there is a pole at infinity.

Infinite duration sequence

Scanned with CamScanner

Bilateral Z-Transform
8

Scanned with CamScanner

Scanned with CamScanner

DISCUSSION FORUM

Properties of Z transform
•Linearity Property
•Time Shifting Property
•Multiplication by Exponential
Sequence Property
•Time Reversal Property
•Differentiation in Z-Domain OR
Multiplication by n Property
•Convolution Property
•Conjugation property
•Intial Value theorem
•Final Value theorem






n
n
x(n)z ] x(n)ZT[ (z)X b (z)X a
] (n) x[ZT b ] (n) x[ZT a
]z (n) x[bz (n) xa
]z (n) xb []z (n) xa [
]z (n) xb z (n) xa [
z ] (n) xb (n) xa [
z ] (n) xb (n) xa [ (n)] xb (n) xa ZT[
21
21
n
n
2
n
n
1
n
2
n
1
n
2
n
1
n
21
n
2121







 
 
























n n
n
n
n LINEAR PROPERTY:
Let x
1
(n), x
2
(n) are two discrete sequences and ZT[ x
1
(n) ] = X
1
(z), ZT[ x
2
(n) ] = X
2
(z), then
according to linear property of z transform
ZT[ a x
1
(n) + b x
2
(n) ] = a X
1
(z) + b X
2
(z)
PROOF:
From basic definition of z transform of a sequence x(n)

Replace x(n) by a x
1
(n) + b x
2
(n)


7/28/2020 22






n
n
x(n)z ] x(n)ZT[ 

































z
1
X
1/zz of treplacemen with] x(n)ZT[
z
1
x(m)
)(z x(m)
x(m)z
m,n m,n Let ,x(-n)z ] x(-n)ZT[
m
m
m
m1
m
m)(
n
n TIME REVERSAL PROPERTY :
Let x(n) be a discrete time sequence and ZT[ x(n) ] = X(z), then according to time reversal property of z transform
ZT[ x(– n) ] = X(1/z)
PROOF:
From basic definition of z transform of a sequence x(n)


Replace x(n) by x(– n)


7/28/2020 24






n
n
x(n)zX(z) ] x(n)ZT[ ] X(z) [
dz
d
] nx(n) ZT[
] nx(n) ZT[
z
1
] X(z) [
dz
d
z ] x(n)n [z
z(-n)z x(n)
(-n)z x(n)
z
dz
d
x(n)] X(z) [
dz
d
n1
1n
1n
n
z
n
n
n
n






















 DERIVATIVE PROPERTY :
Let x(n) be a discrete time sequence and ZT[ x(n) ] = X(z), then according to derivative property of z transform
ZT[ n x(n) ] = - d/dz [ X(z) ]
PROOF:
From basic definition of z transform of a sequence x(n)

Differentiate w.r.t z


7/28/2020 26

X(z)
z
Lt
x(n)
0n
Lt
x(0)



 ...........
x(2)x(1)
x(0)
...........x(2)zx(1)zx(0)
x(n)zX(z)
x(n)z ] x(n)ZT[
2
21
0
n
n













zz
n
n X(z)
z
Lt
x(n)
0n
Lt
)0(
)0(
...............00x(0)
...........
x(2)x(1)
x(0)X(z)
z
Lt
2












x
x INITIAL VALUE THEOREM:
Let x(n) be a discrete time causal sequence and ZT[ x(n) ] = X(z), then according to
initial value theorem of z transform

PROOF:
From basic definition of z transform of a sequence x(n)

Apply as z  

7/28/2020 30