Protein synthesis

186,019 views 53 slides Apr 09, 2012
Slide 1
Slide 1 of 53
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53

About This Presentation

Protein synthesis,genetic code with f


Slide Content

Page 1
Protein synthesis
Made By-
Dr. NidhiSharma

Page 2
•Transcription
•Genetic code
•tRNA
•Ribosomes
•Translation
•Polyribosomes

Page 3
Transcription

Page 4
•Transcription,orRNAsynthesis,isthe
processofcreatinganequivalentRNAcopy
ofasequenceofDNA.
•BothRNAandDNAarenucleicacids,which
usebasepairsofnucleotidesasa
complementarylanguagethatcanbe
convertedbackandforthfromDNAtoRNA
inthepresenceofthecorrectenzymes.

Page 5
Central dogma
DNA RNA
Proteins
Transcription Translation

Page 6
•Duringtranscription,aDNAsequenceis
readbyRNApolymerase,whichproducesa
complementary,antiparallelRNAstrand.
•AsopposedtoDNAreplication,
transcriptionresultsinanRNAcompliment
thatincludesuracil(U)inallinstances
wherethymine(T)wouldhaveoccurredin
aDNAcompliment.

Page 7
•Transcriptionisthefirststepleadingtogene
expression.
•ThestretchofDNAtranscribedintoanRNA
moleculeiscalledatranscriptionunitand
encodesatleastonegene.
•Ifthegenetranscribedencodesforaprotein,
theresultoftranscriptionismessengerRNA
(mRNA),whichwillthenbeusedtocreate
thatproteinviatheprocessoftranslation.

Page 8
•Alternatively,thetranscribedgenemay
encodeforeitherribosomalRNA(rRNA)or
transferRNA(tRNA),othercomponentsof
theprotein-assemblyprocess,orother
ribozymes.

Page 9
ADNAtranscriptionunitencodingforaproteincontains
notonlythesequencethatwilleventuallybedirectly
translatedintotheprotein(thecodingsequence)but
alsoregulatorysequencesthatdirectandregulatethe
synthesisofthatprotein.

Page 10
•AsinDNAreplication,DNAisreadfrom3'→5'
duringtranscription.Meanwhile,thecomplementary
RNAiscreatedfromthe5'→3'direction.
•OnlyoneofthetwoDNAstrands,calledthetemplate
strand,isusedfortranscription.
•TheotherDNAstrandiscalledthecodingstrand,
becauseitssequenceisthesameasthenewly
createdRNAtranscript(exceptforthesubstitutionof
uracilforthymine).

Page 11
•Transcription is divided into 3
stages:
1.initiation
2.elongation
3.termination.

Page 12
Initiation
•Inbacteria,transcriptionbeginswiththebindingofRNA
polymerasetothepromoterinDNA.
•RNApolymeraseisacoreenzymeconsistingoffive
subunits:2αsubunits,1βsubunit,1β'subunit,and1ω
subunit.
•Atthestartofinitiation,thecoreenzymeisassociated
withasigmafactorthataidsinfindingtheappropriate-35
and-10basepairsdownstreamofpromotersequences.

Page 13
Elongation
•OnestrandofDNA,thetemplatestrand(ornoncoding
strand),isusedasatemplateforRNAsynthesis.
•Astranscriptionproceeds,RNApolymerasetraverses
thetemplatestrandandusesbasepairing
complementaritywiththeDNAtemplatetocreatean
RNAcopy.
•AlthoughRNApolymerasetraversesthetemplate
strandfrom3'→5',thecoding(non-template)strand
andnewly-formedRNAcanalsobeusedasreference
points,sotranscriptioncanbedescribedasoccurring
5'→3'.

Page 14
•ThisproducesanRNAmoleculefrom5'→3',anexact
copyofthecodingstrand(exceptthatthyminesare
replacedwithuracils,andthenucleotidesare
composedofaribose(5-carbon)sugarwhereDNAhas
deoxyribose(onelessoxygenatom)initssugar-
phosphatebackbone).
•UnlikeDNAreplication,mRNAtranscriptioncan
involvemultipleRNApolymerasesonasingleDNA
templateandmultipleroundsoftranscription
(amplificationofparticularmRNA),somanymRNA
moleculescanberapidlyproducedfromasinglecopy
ofagene.

Page 15
•Elongation also involves a proofreading
mechanism that can replace incorrectly
incorporated bases.

Page 16
Termination
•Bacteriausetwodifferentstrategiesfortranscription
termination:Rho-independentandRho-dependent

Page 17
Fig. Formation of
hairpin
InRho-independent
transcription
termination,RNA
transcriptionstops
whenthenewly
synthesized RNA
moleculeformsaG-C
richhairpinloop
followedbyarunof
U's,whichmakesit
detachfromtheDNA
template.

Page 18
Fig. Rho dependent
termination
Inthe"Rho-dependent"
typeoftermination,a
proteinfactorcalled
"Rho"destabilizesthe
interactionbetween
thetemplateandthe
mRNA,thusreleasing
thenewlysynthesized
mRNA from the
elongationcomplex.

Page 19
Genetic code

Page 20
Properties of genetic code
•Thecodeisuniversal.Allprokaryoticand
eukaryoticorganismsusethesamecodonto
specifyeachaminoacid.
•Thecodeistriplet.Threenucleotidesmakeone
codon.61ofthemcodeforaminoacidsand3viz.,
UAA,UAGandUGAarenonsensecodonsorchain
terminationcodons.
•Thecodeisdegenerate.Foraparticularamino
acidmorethanonewordcanbeused

Page 21
•The code is non overlapping. A base in mRNA is
not used for two different codons
•The code is commaless. There is no special signal
or commas between codons.
•The code is non ambiguous. A particular codon
will always code for the same amino acid,
wherever it is found.

Page 22

Page 23
Fig. Base sequence
of yeast alanyltRNA
Fig. Common features of
tRNAmolecule
tRNA

Page 24
Fig. 3D structure of tRNA

Page 25
Ribosomes
•Bacterialribosomesconsistsoftwosubunitsof
unequalsize,thelargerhavingasedimentation
coefficientof50Sandthesmallerof30S.
•Thetworibosomalsubunitshaveirregular
shapeswhichfittogetherinsuchawaythata
cleftisformedthroughwhichmRNApassesas
theribosomemovesalongitduringthe
translationprocessandfromwhichthenewly
formedpolypeptidechainemerges.

Page 26
Fig. Ribosomes

Page 27
Translation

Page 28
•Translationisthefirststageofprotein
biosynthesis(partoftheoverallprocessofgene
expression).
•Translationistheproductionofproteinsby
decodingmRNAproducedintranscription.
•Itoccursinthecytoplasmwheretheribosomes
arelocated.
•Ribosomesaremadeofasmallandlarge
subunitwhichsurroundsthemRNA.

Page 29
•Intranslation,messengerRNA(mRNA)isdecoded
toproduceaspecificpolypeptideaccordingtothe
rulesspecifiedbythegeneticcode.
•ThisusesanmRNAsequenceasatemplateto
guidethesynthesisofachainofaminoacidthat
formaprotein.
•ManytypesoftranscribedRNA,suchastransfer
RNA,ribosomalRNA,andsmallnuclearRNAare
notnecessarilytranslatedintoanaminoacid
sequence.

Page 30
•Translationproceedsinfourphases:
–activation,
–initiation,
–elongationand
–termination
(alldescribingthegrowthoftheaminoacid
chain,orpolypeptidethatistheproduct
oftranslation).
Aminoacidsarebroughttoribosomesand
assembledintoproteins.

Page 31
Activation
•Inactivation,thecorrectaminoacidiscovalently
bondedtothecorrecttransferRNA(tRNA).
•Whilethisisnottechnicallyastepintranslation,itis
requiredfortranslationtoproceed.
•Theaminoacidisjoinedbyitscarboxylgrouptothe3'
OHofthetRNAbyanesterbond.
•WhenthetRNAhasanaminoacidlinkedtoit,itis
termed"charged".

Page 32
Fig. Charged tRNA(N-formyl
methionyltRNA
f
met
)

Page 33
Initiation
InProkaryotesinitiationrequiresthelargeandsmall
ribosomesubunits,themRNA,theinitiatortRNAand
threeinitiationfactors(IF1,IF2,IF3)andGTP.The
overallsequenceoftheeventisasfollows
•IF3bindtothefree30Ssubunit,thishelpstoprevent
thelargesubunitbindingtoitwithoutanmRNA
moleculeandforminganinactiveribosome
•IF2complexedwithGTPandIF1thenbindstothe
smallsubunit.ItwillassistthechargedinitiatortRNA
tobind.

Page 34
•The30SsubunitattachedtoanmRNAmolecule
makinguseoftheribosomebindingsite(RBS)onthe
mRNA
•TheinitiatortRNAcanthenbindtothecomplexby
basepairingofitsanticodonwiththeAUGcodonon
mRNA.
•Atthispoint,IF3canbereleased,asitsrolein
keepingthesubunitsapartandhelpingthemRNAto
bindarecomplete.
•Thiscomplexiscalled30Sinitiationcomplex

Page 35
•The50Ssubunitcannowbind,whichdisplaceIF1
andIF2,andtheGTPishydrolysedinthisenergy
consumingstep.
•Thiscomplexiscalledas70Sinitiationcomplex.

Page 36
Fig. Formation of the 70S initiation
complex

Page 37
•TheassembledribosomehastwotRNA
bindingsites.
•ThesearecalledtheAandPsites,foramino
acylandpeptidylsites.
•TheAsiteiswhereincomingaminoacyltRNA
moleculesbind,andthePsiteiswherethe
growingpolypeptidechainisusuallyfound.
•Thesesitesareinthecleftofsmallsubunit
andcontainadjacentcodonsthatarebeing
translated.

Page 38
•Onemajoroutcomeofinitiationisthe
placementoftheinitiatortRNAintheP
site.
•ItistheonlytRNAthatdoesthis,asall
othermustentertheAsite.

Page 39
Fig. Initiation phase of protein synthesis

Page 40
Elongation
•Withtheformationof70Sinitiation
complextheelongationcyclecan
begin.
•IninvolvesthreeelongationfactorsEF-
Tu,EF-TsandEF-G,GTP,chargedtRNA
andthe70Sinitiationcomplex.

Page 41
Elongationisdividedintothreesteps:
1.AminoacyltRNAdelivery.
•EF-TuisrequiredtodelivertheaminoacyltRNAto
theAsiteandenergyisconsumedinthisstepby
thehydrolysisofGTP.
•ThereleasedEF-Tu.GDPcomplexisregenerated
withthehelpofEF-Ts.
•IntheEF-TuEF-TsexchangecycleEF-Tsdisplaces
theGDPandsubsequentlyisdisplaceditselfby
GTP.
•TheresultantEF-Tu.GTPcomplexisnowableto
bindanotheraminoacyltRNAanddeliverittothe
ribosome.
•AllaminoacyltRNAscanformthiscomplexwith
EF-TuexcepttheinitiatortRNA.

Page 42
•Fig. Elongation of polypeptide
chain

Page 43
2.Peptidebondformation.
•Afteraminoacyl-tRNAdelivery,theA-andP-sitesare
bothoccupiedandthetwoaminoacidsthataretobe
joinedareincloseproximity.
•Thepeptidyltransferaseactivityofthe50Ssubunit
cannowformapeptidebondbetweenthesetwo
aminoacidswithouttheinputofanymoreenergy,
sinceenergyintheformofATPwasusedtocharge
thetRNA.

Page 44
•Fig.Peptide bond formation

Page 45
3.Translocation.
•AcomplexofEF-G(translocase)andGTPbindsto
theribosomeand,inanenergyconsumingstep,the
dischargedtRNAisejectedfromtheP-site,the
peptidyl-tRNAismovedfromtheA-sitetotheP-
siteandthemRNAmovesbyonecodonrelativeto
onecodontotheribosome.
•GDPandEF-Garereleased,thelatterbeing
reusable.Anewcodonisnowpresentinthevacant
A-site.
Thecycleisrepeateduntiloneofthe
terminationcodons(UAA,UAGandUGA)appearin
theA-site.

Page 46
Fig. Translocation

Page 47
Termination
•TerminationofthepolypeptidehappenswhentheA
siteoftheribosomefacesastopcodon(UAA,UAG,
orUGA).
•Whenthishappens,notRNAcanrecognizeit,buta
releasingfactorcanrecognizenonsensecodonsand
causesthereleaseofthepolypeptidechain.
•The5'endofthemRNAgivesrisetotheprotein'sN-
terminus,andthedirectionoftranslationcan
thereforebestatedasN->C.

Page 48
Termination
•Terminationofpolypeptidesynthesisissignalled
byoneofthethreeterminationcodonsinthe
mRNA(UAA,UAGandUGA)immediately
followingthelastaminoacidcodon.
•Inprokaryotes,onceaterminationcodon
occupiestheribosomalA-site,threetermination
orreleasefactors,viz.,theproteinRF1,RF2and
RF3contributeto-
Thehydrolysisoftheterminalpeptidyl-tRNA
bond.
Releaseofthefreepolypeptideandthelast
unchargedtRNAfromtheP-site
Thedissociationofthe70Sribosomeintoits30S
and50Ssubunits

Page 49
•RF1recognizestheterminationcodonUAG
andUAAandRF2recognizeUGAandUAA.
•EitherRF1orRF2bindsatthetermination
codonandinducespeptidyltransferaseto
transferthegrowingpeptidechaintoa
watermoleculeratherthantoanother
aminoacid.
•FunctionofRF3isnotknown.

Page 50
Fig. Termination

Page 51
Polyribosomes
•AsinglestrandofmRNAistranslated
simultaneouslybymanyribosomes,spaced
closelytogether.
•Suchclustersofribosomesarecalled
polysomesorpolyribosomes.
•Thesimultaneoustranslationofasingle
mRNAbymanyribosomesallowhighly
efficientuseofthemRNA

Page 52
Fig. Polyribosomes

Page 53
THANK YOU