QMM.pdf quantitative mathematics for pg mba

naveenkpsspsr 0 views 9 slides Oct 05, 2025
Slide 1
Slide 1 of 9
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9

About This Presentation

Quantitive mathematics


Slide Content

eo aaa |
QUANTITATIVE METHODS FOR

!
EMENT Mubiktha
MANAGE Pubilsne a
Ser -A
»
Guien
Jay?
¿al vz
Ge xx) =f (gery)
lu)

($09 )02):2 (0.06) drain with x
NA) a)

GI )L13 (200,00) A all cual y

2) Tha types % functions wit an trample

"02 - One function seach element
Unue element $ © drum
AL: fx) ar
© Onde function : Evey element Y denn das à Be-imige
Im drain
ta f0)13 f RIR

3 Mary One Junco > Tue ou more clone, % domain
map te he Same bed % G. op

Y for

% demain maps ba

constant function Every element cleman mapı
ts te Same Value
<2: f (4222

a
HAT (0) 2513 e dret yo

di
a E Spanner -40)

-d 3 + Ay route du
da are Lt de

du dy 1 de di
sas ryan SY Ore? À eut Le
du er ge a O

= 150% aux de”

D fern an tage) dr

2 fıra au prat Siege de Jet

ois (24) 3 (20 bgaA )-10x 46

ort
pam #4 % loga #0
MRC UC ge en
a -
”) Conelation Regression

1 Shoes Abegl y olive que ord E

Pa o eh,

a Value dues hernan =p te 41 [rió on equal Ye +4 Zu

3 be déluchen haber. | Em Vawablo à dpt, Ye Aa
€ idererkal veces % tndependsnl

a a action Heures avalen and Pi

Oulcomes

0] Dah ao] a] =

| bo 5 30
|

so , a
os lo 1200
| ae | aa

to 5

100 °

200 Ñ

i 3% Top ss

Daly aga > Cl)
3840 „ur 29
a

Do

fay In Ir [aen- a2

alas]. 4 7
@yati ys 4 lo

E elels ,

Bela ie

| je A en)

L 441238
Pin ee) 108

MEN 545

=1- 248 er

uri sor STH 40146 F104 IY

ge tir tac

4) Mectian
S% tom ee" lem ¡6 so
AA in re 2ÊTS
2 2 A
3) Moele

AN values occu Orly ome =

No mde

Jectim-B

fa)=1-ux ts
2 22-40)222-4

der px
are-y:e
Sepa:
New find “00
a)-av0 5
FO ali vena #54
Hers:
FJ ut 43
(2)22*% 423
=Uu-343=

The funtion allein minimum Value 01!
(00,2) (0,00)
Md ds mis ¡la Lido +

D)

There gave a Muga Cost

ME: bon ten ?
Te = Juc da

= fa w® tha?) da
abr 4 Wet 4 oat
3

toadke

2 e
COD: bad que

The quen £02) - à

Cra bla) 45 (2% 20 340
Cee 1420-14

= -y
RA
age Cod £
= ha +522 y
=
e 6152 an? 4
N idoxe £
Em
X +8 USARA) _ TA
Agr 21 (142) 2042)

ussatg Venant
wer Vie 2112
dx (4) > ums
vs
ve
= 520) (rx tH) xt 2)

cx 2 +2

4 (x 223 „min?

z
22btur (ya)?

Jadn= 12° m
= ES
Jam -3x
ern rol Le 1° gaye

lu j
ED) standard deviation and co epbiccenh 04 variance
9 Stanclacl plevation

at
ear
trono |
mle 3
wz Zo | apar | asus] bu | 2082
O ing
e a lot el an
us lo
M] Jiur | us uso | zul 2400
e le 4
| 30 i fale
End sa bags
fee y
Uta o
33 33
*Vore-r = Viga © 43-02
SY oggucent 01 vantonce
US vio
= 4302
we2 wo = 00-447 D 1e
u (41x 100 407

‘ 2
ur | 6007
aaa | em | 589 LU
$31 18 | aggy | omo | tere |
MU go | mae] ste
[una | es | Ans
ST ores | Boas
“| eno | 3 |
71m | rua |
PA
1950 | sar BE

std

Vena ar Jin ys. cpr)

TE. 1065016) — C540) C1090)
u

VC8 (30509. C5402 Ta errc072.- eso?
= Piu 53200
(coer RT CoS. ue waa]

“us

ee
Vets71-2n DST Pere)
y= aug

V3 43200

uy

114699

Free]

Section ©

')lorrelation copivand re £49,

Vo
- 2 =
ET
¿om 2042
ans

i) Regressfon equal rom Ys yon

>, >
ARA

ee ‚ae ses

ys

Kobe 07-8)
x=134 =(0-q +6

ayy
YX yy ¿by er)

o
Zen

Y
7.
Y

8

-0

©

665 Ob)
66x -3 948
6s etal

u
Tags