Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual

Andersonasaa 9,120 views 35 slides Apr 01, 2019
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Full download : https://goo.gl/8hWvKv Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual


Slide Content

Ch. 2 Solutions
3/20/19 2-1
2.1 Let
S
x
ab
cd






and write the S
x eigenvalue equations in matrix notation
ab
cd






1
2
1
1







2
1
2
1
1






ab
cd






1
2
1
1







2
1
2
1
1






which yields
ab
2
            cd
2
ab
2
            cd
2
Solve by adding and subtracting the equations to get
a0      b
2
      c
2
      d0
Hence the matrix representing S
x in the S
z basis is
S
x
2
01
10






Let
S
y
ab
cd






and write the S
y eigenvalue equations in matrix notation
ab
cd






1
2
1
i







2
1
2
1
i






ab
cd






1
2
1
i







2
1
2
1
i






which yields
aib
2
            cidi
2
aib
2
            cidi
2
Solve by adding and subtracting the equations to get
a0      bi
2
      ci
2
      d0

Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Full Download: http://alibabadownload.com/product/quantum-mechanics-a-paradigms-approach-1st-edition-mcintyre-solutions-manual/
This sample only, Download all chapters at: alibabadownload.com

Ch. 2 Solutions
3/20/19 2-2
Hence the matrix representing S
y in the S
z basis is
S
y
2
0i
i0







2.2 Solve the secular equation
detS
x
I0

2
2

0
Solve to find the eigenvalues

2

2






2
0

2

2






2

2
which was to be expected, because we know that the only possible results of a
measurement of any spin component are 2 . Find the eigenvectors. For the positive
eigenvalue:
2
01
10






a
b







2
a
b






yields
ba
The normalization condition yields
a
2
a
2
1
a
2

1
2
Choose a to be real and positive, resulting in
a
1
2
b
1
2

Ch. 2 Solutions
3/20/19 2-3
so the eigenvector corresponding to the positive eigenvalue is

x
1
2

1
1






Likewise, the eigenvector for the negative eigenvalue is
2
01
10






a
b







2
a
b






ba
The normalization condition yields
a
2
a
2
1
a
2

1
2
Choose a to be real and positive, resulting in
a
1
2
b
1
2
so the eigenvector corresponding to the negative eigenvalue is

x
1
2

1
1







2.3 From Eq. (1.37), we know the S
z eigenstates in the S
x basis:

1
2

x
    
x 

1
2

x
    
x 
Let the representation of S
z in the S
x basis be
S
z
ab
cd






and write the S
z eigenvalue equations in matrix notation
ab
cd






1
2
1
1







2
1
2
1
1






ab
cd






1
2
1
1







2
1
2
1
1





Ch. 2 Solutions
3/20/19 2-4
These yield
ab
2
            cd
2
ab
2
            cd
2
Solve by adding and subtracting the equations to get
a0      b
2
      c
2
      d0
Hence the matrix representing S
z in the S
x basis is
S
z
S
x2
01
10






Now diagonalize:

2
2

0        
2

2
2
0        
2
as expected. Find the eigenvectors:
2
01
10






a
b







2
a
b






        ba
yielding

S
x
1
2

1
1






Likewise
2
01
10






a
b







2
a
b






       ba

S
x
1
2

1
1






Hence the eigenvalue equations are
2
01
10






1
2

1
1







2
1
2

1
1






            S
z

2
    OK
2
01
10






1
2

1
1







2
1
2

1
1






            S
z

2
    OK

Ch. 2 Solutions
3/20/19 2-5
2.4 The general matrix is
A
ab
cd






The matrix elements are
A10
ab
cd






1
0






10
a
c






a
A10
ab
cd






0
1






10
b
d






b
A01
ab
cd






1
0






01
a
c






c
A01
ab
cd






0
1






01
b
d






d
Hence we get
A
AA
AA









2.5 The commutators are
[S
x
,S
y
]
2
01
10






2
0i
i0






    
2
0i
i0






2
01
10






2






2
i0
0i







i0
0i














2






2
2i0
02i






i
2






10
01






 iS
z
[S
y
,S
z
]
2
0i
i0






2
10
01






    
2
10
01






2
0i
i0






2






2
0i
i0







0i
i0














2






2
02i
2i0






i
2






01
10






 iS
x

Ch. 2 Solutions
3/20/19 2-6
[S
z,S
x]
2
10
01






2
01
10






    
2
01
10






2
10
01






2






2
01
10







01
10














2






2
02
20






i
2






0i
i0






 iS
y

2.6 The spin component operator Sn is
S
n
Sˆn
S
x
sincosS
y
sinsinS
z
cos
Using the matrix representations for Sx, Sy, and Sz gives
S
n
2
01
10






sincos
2
0i
i0






sinsin
2
10
01






cos
2
cos sincosisinsin
sincosisinsin cos






2
cossine
i
sine
i
cos







2.7 Diagonalize Sn:
S
n
2
cossine
i
sine
i
cos






Now diagonalize:
2
cos
2
sine
i
2
sine
i

2
cos
0

2

2
2
cos
2

2
2
sin
2
0        
2

2
2
0        
2
as expected. Find the eigenvectors:

Ch. 2 Solutions
3/20/19 2-7
2
cossine
i
sine
i
cos






a
b







2
a
b






acosbsine
i
a        bae
i1cos
sin
The normalization condition yields
a
2
a
21cos
sin






2
1
a
2

sin
2

22cos

4sin
2
2cos
2
2
4sin
2
2
cos
2
2
yielding

n
cos

2
e
i
sin

2

Likewise
2
cossine
i
sine
i
cos






a
b







2
a
b






acosbsine
i
a        bae
i1cos
sin
The normalization condition yields
a
2
a
21cos
sin






2
1
a
2

sin
2

22cos

4sin
2
2cos
2
2
4cos
2
2
sin
2
2
yielding

n
sin

2
e
i
cos

2


2.8 The 
n eigenstate is

n
cos

2
e
i
sin

2
cos

8
e
i53
sin

8

The probabilities are

Ch. 2 Solutions
3/20/19 2-8

P
y

y

n
2

1
2

i
2
 cos

8
e
i53
sin

8
 
2

1
2
cos

8
ie
i53
sin

8
2

1
2
cos

8
sin

8
sin
5
3
isin

8
cos
5
3
2

1
2
cos
2
8
sin
2
8
sin
25
3
sin
2
8
cos
25
3
2cos

8
sin

8
sin
5
3 

1
2
12cos

8
sin

8
sin
5
3 0.194

P
y

y

n
2

1
2

i
2
 cos

8
e
i53
sin

8
 
2

1
2
cos

8
ie
i53
sin

8
2

1
2
cos

8
sin

8
sin
5
3
isin

8
cos
5
3
2

1
2
cos
2
8
sin
2
8
sin
25
3
sin
2
8
cos
25
3
2cos

8
sin

8
sin
5
3 

1
2
12cos

8
sin

8
sin
5
3 0.806

2.9 The expectation value of S
z is easy to do in Dirac notation:
S
z
S
z

2

2

2
The expectation values of S
x and S
y are easier in matrix notation:
S
x
10
2
01
10






1
0







2
10
0
1






0
S
y
10
2
0i
i0






1
0







2
10
0
i






0
To find the uncertainties, we need the expectation values of the squares:
S
z
2
S
z
2

22

2






2

2






2
S
x
2
10
2
01
10






2
01
10






1
0







2






2
10
1
0







2






2
S
y
2
10
2
0i
i0






2
0i
i0






1
0







2






2
10
1
0







2






2
The uncertainties are

Ch. 2 Solutions
3/20/19 2-9
S
zS
z
2
S
z
2

2






2

2






2
0
S
x
S
x
2
S
x
2

2






2
0
2






S
yS
y
2
S
y
2

2






2
0
2







2.10 These expectation values are easier in matrix notation:
S
x
1
2
1i
2
01
10






1
2
1
i







4
1i
i
1






0
S
y

1
2
1i
2
0i
i0






1
2
1
i







4
1i
1
i







2
S
z
1
2
1i
2
10
01






1
2
1
i







4
1i
1
i






0
To find the uncertainties, we need the expectation values of the squares:
S
x
2

1
2
1i
2
01
10






2
01
10






1
2
1
i







1
22






2
1i
1
i







2






2
S
y
2

1
2
1i
2
0i
i0






2
0i
i0






1
2
1
i







1
22






2
1i
1
i







2






2
S
z
2

1
2
1i
2
10
01






2
10
01






1
2
1
i







1
22






2
1i
1
i







2






2

The uncertainties are
S
xS
x
2
S
x
2

2






2
0
2






S
y
S
y
2
S
y
2

2






2

2






2
0
S
zS
z
2
S
z
2

2






2
0
2





Ch. 2 Solutions
3/20/19 2-10
In the vector model, shown below, the spin is precessing around the y-axis at a constant
angle such the y-component of the spin is constant and x- and z-components oscillate
about zero.



2.11 The commutators in matrix notation are
[S
2
,S
x
]
3
2
4
10
01






2
01
10






    
2
01
10






3
2
4
10
01






3
3
8
01
10







01
10














0
[S
2
,S
y
]
3
2
4
10
01






2
0i
i0






    
2
0i
i0






3
2
4
10
01






3
3
8
0i
i0







0i
i0














0
[S
2
,S
z
]
3
2
4
10
01






2
10
01






    
2
10
01






3
2
4
10
01






3
3
8
10
01







10
01














0

Ch. 2 Solutions
3/20/19 2-11
In abstract notation, the commutators are
[S
2
,S
x
]S
x
2
S
y
2
S
z
2
,S
x




S
x
2
,S
x




S
y
2
,S
x




S
z
2
,S
x




S
x
2
S
x
S
x
S
x
2
S
y
2
S
x
S
x
S
y
2
S
z
2
S
x
S
x
S
z
2
S
x
3
S
x
3
S
y
S
y
S
x
S
x
S
y
S
y
S
z
S
z
S
x
S
x
S
z
S
z
0S
y
S
x
S
y
iS
z S
y
S
x
iS
z S
y
S
z
S
x
S
z
iS
y S
z
S
x
iS
y S
z
S
y
S
x
S
y
iS
y
S
z
S
y
S
x
S
y
iS
z
S
y
S
z
S
x
S
z
iS
z
S
y
S
z
S
x
S
z
iS
y
S
z
0
[S
2
,S
y
]S
x
2
S
y
2
S
z
2
,S
y




S
x
2
,S
y




S
y
2
,S
y




S
z
2
,S
y




S
x
2
S
y
S
y
S
x
2
S
y
2
S
y
S
y
S
y
2
S
z
2
S
y
S
y
S
z
2
S
x
S
x
S
y
S
y
S
x
S
x
S
y
3
S
y
3
S
z
S
z
S
y
S
y
S
z
S
z
S
x
S
y
S
x
iS
z S
x
S
y
iS
z S
x
0S
z
S
y
S
z
iS
x S
z
S
y
iS
x S
z
S
x
S
y
S
x
iS
x
S
z
S
x
S
y
S
x
iS
z
S
x
S
z
S
y
S
z
iS
z
S
x
S
z
S
y
S
z
iS
x
S
z
0
[S
2
,S
z
]S
x
2
S
y
2
S
z
2
,S
z




S
x
2
,S
z




S
y
2
,S
z




S
z
2
,S
z




S
x
2
S
z
S
z
S
x
2
S
y
2
S
z
S
z
S
y
2
S
z
2
S
z
S
z
S
z
2
S
x
S
x
S
z
S
z
S
x
S
x
S
y
S
y
S
z
S
z
S
y
S
y
S
z
3
S
z
3
S
x
S
z
S
x
iS
y S
x
S
z
iS
y S
x
S
y
S
z
S
y
iS
x S
y
S
z
iS
x S
y
0
S
x
S
z
S
x
iS
x
S
y
S
x
S
z
S
x
iS
y
S
x
S
y
S
z
S
y
iS
y
S
x
S
y
S
z
S
y
iS
x
S
y
0

2.12 For S
x the diagonalization yields the eigenvalues
S
x
2
010
101
010









2
0
2

2
0
2













0     
2

2
2
2

20 

2

2
0     1,0,1
and the eigenvectors

Ch. 2 Solutions
3/20/19 2-12
2
010
101
010








a
b
c








1
a
b
c








      
ba2
acb2
bc2
a
2
b
2
c
2
1      b
2
1
2
1
1
2 1      b
1
2
,a
1
2
,c
1
2
1
x

1
2
1
1
2
0
1
2
1
2
010
101
010








a
b
c








0
a
b
c








      
b0
ac0
b0
a
2
b
2
c
2
1      a
2
111      a
1
2
,b0,c
1
2
0
x

1
2
1
1
2
1
2
010
101
010








a
b
c








1
a
b
c








      
ba2
acb2
bc2
a
2
b
2
c
2
1      b
2
1
2
1
1
2 1      b
1
2
,a
1
2
,c
1
2
1
x

1
2
1
1
2
0
1
2
1
For S
y the diagonalization yields
S
y
2
0i0
i0i
0i0









i
2
0
i
2

i
2
0
i
2













0     
2

2
2
i
2

i
20 

2

2
0     ,0,
and the eigenvectors
2
0i0
i0i
0i0








a
b
c








1
a
b
c








      
iba2
iaicb2
ibc2
a
2
b
2
c
2
1      b
2
1
2
1
1
2 1      b
i
2
,a
1
2
,c
1
2
1
y

1
2
1
i
2
0
1
2
1

Ch. 2 Solutions
3/20/19 2-13
2
0i0
i0i
0i0








a
b
c








0
a
b
c








      
ib0
iaic0
ib0
a
2
b
2
c
2
1      a
2
111      a
1
2
,b0,c
1
2
0
y

1
2
1
1
2
1
2
0i0
i0i
0i0








a
b
c








1
a
b
c








      
iba2
iaicb2
ibc2
a
2
b
2
c
2
1      b
2
1
2
1
1
2 1      b
i
2
,a
1
2
,c
1
2
1
y

1
2
1
i
2
0
1
2
1

2.13 The commutators are
[S
x
,S
y
]
2
010
101
010







2
0i0
i0i
0i0








    
2
0i0
i0i
0i0







2
010
101
010








2
2
i0i
000
i0i









i0i
000
i0i


















2
2
2i00
000
002i








i
100
000
001








 iS
z
[S
y
,S
z
]
2
0i0
i0i
0i0








100
000
001








    
100
000
001







2
0i0
i0i
0i0








2
2
000
i0i
000









0i0
000
0i0


















2
2
0i0
i0i
0i0








i
2
010
101
010








 iS
x

Ch. 2 Solutions
3/20/19 2-14
[S
z
,S
x
]
100
000
001







2
010
101
010








    
2
010
101
010








100
000
001








2
2
010
000
010









000
101
000


















2
2
010
101
010








i
2
0i0
i0i
0i0








 iS
y

2.14 Using the component matrices we find
S
2
S
x
2
S
y
2
S
z
2
2
010
101
010







2
010
101
010









2
0i0
i0i
0i0







2
0i0
i0i
0i0









100
000
001








100
000
001








2
2
100
020
001









2
2
100
020
001









100
000
001








2
2
100
010
001








The eigenvalue equation is
S
2
smss1
2
sm
For spin-1 this is
S
2
1m2
2
1m
Hence the S
2 operator must be 2
2 times the identity matrix:
S
2
2
2
100
010
001







Ch. 2 Solutions
3/20/19 2-15
2.15 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are

P
1
1
in
2
1
2
29
1
3i
29
0
4
29
1



2

2
29
11
3i
29
10
4
29
11
2

2
29
2

4
29

P
0
0
in
2
0
2
29
1
3i
29
0
4
29
1



2

2
29
01
3i
29
00
4
29
01
2

3i
29
2

9
29

P
1
1
in
2
1
2
29
1
3i
29
0
4
29
1



2

2
29
11
3i
29
10
4
29
11
2

4
29
2

16
29
The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S
x are always 1, 0, 1
for a spin-1 particle. The probabilities are

P
1x
x1
in
2

1
2
1
1
2
0
1
2
1 
2
29
1
3i
29
0
4
29
1 
2

1
29

3i
229

2
29
2

1
58
23i
2

11
58

P
0x

x
0
in
2

1
2
1
1
2
1 
2
29
1
3i
29
0
4
29
1 
2

2
229

4
229
2

36
58

P
1x
x1
in
2

1
2
1
1
2
0
1
2
1 
2
29
1
3i
29
0
4
29
1 
2

1
29

3i
229

2
29
2

1
58
23i
2

11
58
The three probabilities add to unity, as they must.
c) For the first measurement, the expectation value is

S
z
mP
m
m
 1
4
29
0
9
29
1
16
29

12
29
For the second measurement, the expectation value is

S
x
mP
mx
m
 1
11
58
0
36
58
1
11
58
0
The histograms are shown below.

Ch. 2 Solutions
3/20/19 2-16


2.16 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are

P
1
1
in
2
1
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29
11
y

3i
29
10
y

4
29
11
y
2

2
29
1
2

3i
29
1
2

4
29
1
2
2

1
58
23i
2

11
58

P
0
0
in
2
0
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29
01
y

3i
29
00
y

4
29
01
y
2

2
29
i
2

3i
29
0
4
29
i
2
2

1
58
i24
2

36
58

P
1
1
in
2
1
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29
11
y

3i
29
10
y

4
29
11
y
2

2
29
1
2

3i
29
1
2

4
29
1
2
2

1
58
23i
2

11
58
The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S
y are always 1, 0, 1
for a spin-1 particle. The probabilities are

P
1y

y
1
in
2

y
1
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29y
11
y

3i
29y
10
y

4
29y
11
y
2

2
29
2

4
29

P
0y

y
0
in
2

y
0
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29y
01
y

3i
29y
00
y

4
29y
01
y
2

3i
29
2

9
29

Ch. 2 Solutions
3/20/19 2-17

P
1y

y
1
in
2

y
1
2
29
1
y

3i
29
0
y

4
29
1
y




2

2
29y
11
y

3i
29y
10
y

4
29y
11
y
2

4
29
2

16
29
The three probabilities add to unity, as they must.
c) For the first measurement, the expectation value is

S
z
mP
m
m
 1
11
58
0
36
58
1
11
58
0
For the second measurement, the expectation value is

S
y
mP
my
m
 1
4
29
0
9
29
1
16
29

12
29
The histograms are shown below.


2.17 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are

P1
2
100 
1
30
1
2
5i








2

1
30
1
2

1
30

P
0
0
2
010 
1
30
1
2
5i








2

1
30
2
2

4
30

P-1
2
001 
1
30
1
2
5i








2

1
30
5i
2

25
30
The expectation value of S
z is

S
z
PP
0
0P


1
30

4
30
0
25
30

24
30

4
5
b) The expectation value of S
x is

Ch. 2 Solutions
3/20/19 2-18
S
x
S
x

1
30
125i 
2
010
101
010








1
30
1
2
5i









1
302
125i 
2
15i
2









1
302
2215i5i2 
2
15


2.18 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are

P
1
1
in
2
1
1
14
1
3
14
0
2i
14
1



2

1
14
11
3
14
10
2i
14
11
2

1
14
2

1
14

P
0
0
in
2
0
1
14
1
3
14
0
2i
14
1



2

1
14
01
3
14
00
2i
14
01
2

3
14
2

9
14

P
1
1
in
2
1
1
14
1
3
14
0
2i
14
1



2

1
14
11
3
14
10
2i
14
11
2

2i
14
2

4
14
b) After the S
z measurement, the system is in the state 1 . The possible results of a
measurement of the spin component S
x are always 1, 0, 1 for a spin-1 particle.
The probabilities are

P
1x

x
1
in
2

1
2
1
1
2
0
1
2
1 1
2

1
2
2

1
4

P
0x

x
0
in
2

1
2
1
1
2
1 1
2

1
2
2

1
2

P
1x

x
1
in
2

1
2
1
1
2
0
1
2
1 1
2

1
2
2

1
4
c) Schematic of experiment.

Ch. 2 Solutions
3/20/19 2-19
2.19 The probability is

P

f

f

i
2

1i
7y
1
2
7y
0
i
7y
1 
1
6
1
2
6
0
i3
6
1 
2

1i
7
1
6y
11
1i
7
2
6y
10
1i
7
i3
6y
11
2
7
1
6y
01
2
7
2
6y
00
2
7
i3
6y
01

i
7
1
6y
11
i
7
2
6y
10
i
7
i3
6y
11
2

1i
7
1
6
1
2

1i
7
2
6
i
2

1i
7
i3
6
1
2

2
7
1
6
1
2

2
7
2
6
0
2
7
i3
6
1
2


i
7
1
6
1
2

i
7
2
6
i
2

i
7
i3
6
1
2
2

1
168
1i22i3i3220i26i23
2

1
168
5222ii3i26
2

1
168
522
2
2326 
2
 

1
168
64824386 0.524

or in matrix notation

P

f

f

i
2

1i
7
1
2
i
2
1
2

2
7
1
2
0
1
2

i
7y
1
2
i
2
1
2 
1
6
1
2
i3










2

1
16812222i2122 
1
2
i3










2

1
168
12242ii3i26
2

1
168
64824386 0.524


2.20 Spin 1 unknowns. Follow the solution method given in the lab handout. (i) For
unknown number 1, the measured probabilities are

P
1
1
4
P
1x
1
4
P
1y1
P
0
1
2
P
0x
1
2
P
0y0
P
1

1
4
P
1x

1
4
P
1y
0
Write the unknown state as

Ch. 2 Solutions
3/20/19 2-20

1
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives

P
1
1
1
2
1a1b0c1 
2
a
2

1
4
      a
1
2
P
0
0
1
2
0a1b0c1 
2
b
2

1
2
      b
1
2
e
i
P
1
1
1
2
1a1b0c1 
2
c
2

1
4
      c
1
4
e
i
allowing for possible relative phases. So now the unknown state is

1

1
2
1
1
2
e
i
0
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives

P
0x

x
0
1
2

1
2
11 
1
2
1
1
2
e
i
0
1
2
e
i
1 
2

1
22
1e
i

2

1
8
1e
i
1e
i

1
8
11e
i
e
i
 
1
4
1cos 
1
2
cos1
Giving the state

1

1
2
1
1
2
e
i
0
1
2
1
Equating the predicted S
y probabilities and the experimental results gives

P
1y

y
1
1
2

1
2
1
i
2
0
1
2
1 
1
2
1
1
2
e
i
0
1
2
1 
2

1
4

i
2
e
i

1
4
2

1
4
1ie
i
1ie
i

1
4
11ie
i
ie
i
 
1
2
1sin 1sin1

2
Hence the unknown state is

1

1
2
1
1
2
e
i

2
0
1
2
1
1
2
1
i
2
0
1
2
11
y
(ii) For unknown number 2, the measured probabilities are

P
1
1
4
P
1x
9
16
P
1y0.870
P
0
1
2
P
0x
3
8
P
0y0.125
P
1

1
4
P
1x

1
16
P
1y
0.005
Write the unknown state as

2
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives

Ch. 2 Solutions
3/20/19 2-21

P
1
1
2
2
1a1b0c1 
2
a
2

1
4
      a
1
2
P
0
0
2
2
0a1b0c1 
2
b
2

1
2
      b
1
2
e
i
P
1
1
2
2
1a1b0c1 
2
c
2

1
4
      c
1
2
e
i
allowing for possible relative phases. So now the unknown state is

2

1
2
1
1
2
e
i
0
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives

P
0x

x
0
2
2

1
2
11 
1
2
1
1
2
e
i
0
1
2
e
i
1 
2

1
22
1e
i

2

1
8
1e
i
1e
i

1
8
11e
i
e
i
 
1
4
1cos 
3
8
cos
1
2

2
3
,
4
3

P
1x

x
1
2
2

1
2
1
1
2
0
1
2
1 
1
2
1
1
2
e
i
0
1
2
e
i
1 
2

1
4

1
2
e
i

1
4
e
i
2

1
16
12e
i
e
i
 12e
i
e
i
 
1
16
64cos2cos4cos 

1
16
64cos2cos4coscos4sinsin 

1
16
52cos4sinsin 
9
16
which yields
cos2sinsin2
2sinsin2cos
4sin
2
sin
2
44coscos
2

41cos
2
 
3
4
44coscos
2

4cos
2
4cos10
2cos10
cos
1
2


3
,
5
3
Equating the predicted S
y probabilities and the experimental results gives

P
1y

y
1
2
2

1
2
1
i
2
0
1
2
1 
1
2
1
1
2
e
i
0
1
2
e
i
1 
2

1
4

i
2
e
i

1
4
e
i
2

1
16
12ie
i
e
i
 12ie
i
e
i
 
1
16
64sin2cos4sin 

1
16
64sin2cos4sincos4cossin 

1
16
76sin4cossin 0.87
which gives

Ch. 2 Solutions
3/20/19 2-22
3sin2cossin3.4623
2cossin233sin
4cos
2
sin
2
12123sin9sin
2

41sin
2
 
3
4
12123sin9sin
2

sin
2
3sin
3
4
0
sin
3
2
0
sin
3
2


3
,
2
3


3

2
3
Hence the unknown state is

2

1
2
1
1
2
e
i

3
0
1
2
e
i
2
3
11
n

2
,

3
(iii) For unknown number 3, the measured probabilities are

P
1
1
3
P
1x
1
6
P
1y0.0286
P
0
1
3
P
0x
2
3
P
0y0
P
1

1
3
P
1x

1
6
P
1y
0.9714
Write the unknown state as

3
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives

P
1
1
3
2
1a1b0c1 
2
a
2

1
3
      a
1
3
P
0
0
3
2
0a1b0c1 
2
b
2

1
3
      b
1
3
e
i
P
1
1
3
2
1a1b0c1 
2
c
2

1
3
      c
1
3
e
i
allowing for possible relative phases. So now the unknown state is

3

1
3
1
1
3
e
i
0
1
3
e
i
1
Equating the predicted S
x probabilities and the experimental results gives

P
0x
x0
3
2

1
2
11 
1
3
1e
i
0e
i
1 
2

1
6
1e
i

2

1
6
1e
i
1e
i

1
6
11e
i
e
i
 
1
3
1cos 
2
3
cos1
Equating the predicted S
y probabilities and the experimental results gives

Ch. 2 Solutions
3/20/19 2-23

P
1y

y
1
3
2

1
2
1
i
2
0
1
2
1 
1
3
1e
i
01 
2

1
3
1
2

i
2
e
i

1
2 
2

1
3
1
i
2
e
i
1
i
2
e
i

1
3
3
2
2sin 0.0286
sin1
3
2
Hence the unknown state is

3

1
3
1
i
3
0
1
3
1m
n
(iv) For unknown number 4, the measured probabilities are

P
1
1
2
P
1x
1
4
P
1y
1
4
P
00P
0x
1
2
P
0y
1
2
P
1

1
2
P
1x

1
4
P
1y

1
4
Write the unknown state as

4
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives

P
1
1
4
2
1a1b0c1 
2
a
2

1
2
      a
1
2
P
0
0
4
2
0a1b0c1 
2
b
2
0      b0
P
1
1
4
2
1a1b0c1 
2
c
2

1
2
      c
1
2
e
i
allowing for possible relative phases. So now the unknown state is

4

1
2
1
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives

P
0x

x
0
4
2

1
2
11 
1
2
1e
i
1 
2

1
2
1e
i

2

1
4
1e
i
1e
i

1
4
11e
i
e
i
 
1
2
1cos 
1
2
cos0

2
,
3
2
Giving

4

1
2
1i1 
with no more info from Sx, Sy, Sz measurements. In the SPINS program choose n at
angles  = 90˚,  = 45˚, 225˚ to see that the unknown state is

4

1
2
1i1 0
n

2
,

4
0
n

2
,
5
4  

Ch. 2 Solutions
3/20/19 2-24
2.21. The spin-1 interferometer had an S
z SG device, an S
x deveice, and an S
z SG
device. The S
z eigenstates are 1,0,1 . The S
x eigenstates are
1
x

1
2
1
1
2
0
1
2
1
0
x

1
2
1
1
2
1
1
x

1
2
1
1
2
0
1
2
1 .
Let 
i be the quantum state after the i
th
Stern-Gerlach device. The first SG device
transmit particles with S
z
 , so the state 
1 is

1
1 .
The second SG device transmits particles in 1, 2, or 3 of the S
x eigenstates 1
x
,0
x
,1
x
. To find 
2 , we use the projection postulate:

2

P
n

1

1P
n
1
where Pn is the projection operator onto the measured states. For example, if the second
SG device transmits particles with S
x
 , we get

2

P
1x

1

1P
1x
1

1
x  x
11
11
x  x
11
1
x
as expected. In matrix notation, the S
x eigenstates are
1
x
12
12
12










0
x
12
0
12










1
x
12
12
12










and the projection operators are

Ch. 2 Solutions
3/20/19 2-25
P
1x
1
x  x
1
1
2
1
2
1
2










1
2
1
2
1
2 

1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4










P
0x
0
x  x
0
1
2
0
1
2










1
2
0
1
2 

1
20
1
2
000
1
20
1
2










P
1x
1
x  x
1
1
2
1
2
1
2










1
2
1
2
1
2 

1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4










The probability of measuring a result after the third SG device is
P
2
3
2 . We
want to calculate the three probabilities

P
1
1
2
2
P
0
0
2
2
P
1
1
2
2
for all possible (7) cases of 1 beam, 2 beams, or 3 beams from SG2.
(i) When the second SG device transmits particles with S
x
1 only:

2

P
1x

1

1P
1x
1

P
1x
1
1P
1x1
P
1x1
1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4










1
0
0









1
4
1
22
1
4










1P
1x
1 100 
1
4
1
22
1
4










14

2
1
14
1
4
1
22
1
4











1
2
1
2
1
2










which is 1
x as expected. The three probabilities are

Ch. 2 Solutions
3/20/19 2-26

P
1
1
2
2
100 
1
2
1
2
1
2










2

1
4
P
0
0
2
2
010 
1
2
1
2
1
2










2

1
2
P
1
1
2
2
001 
1
2
1
2
1
2










2

1
4
(ii) When the second SG device transmits particles with S
x
0 , 
2
0
x and the
three probabilities are

P
1
1
2
2
100 
1
2
0
1
2










2

1
2
P
00
2
2
010 
1
2
0
1
2










2
0
P
1
1
2
2
001 
1
2
0
1
2










2

1
2
(iii) When the second SG device transmits particles with S
x
1 , 
2
1
x and the
three probabilities are

Ch. 2 Solutions
3/20/19 2-27

P
1
1
2
2
100 
1
2

1
2
1
2










2

1
4
P
0
0
2
2
010 
1
2

1
2
1
2










2

1
2
P
1
1
2
2
001 
1
2

1
2
1
2










2

1
4
(iv) When the second SG device transmits particles with S
x
 and S
x
0 in a
coherent beam

2

P
1x
P
0x 
1

1
P
1x
P
0x 
1

P
1x
P
0x 1
1P
1x
P
0x 1
P
0x
1
1
20
1
2
000
1
20
1
2










1
0
0









12
0
12










P
1x
P
0x 1
14
122
14











12
0
12











34
122
14










1P
1x
P
0x 1 100 
34
122
14










34

2
1
34
34
122
14











32
16
123












The three probabilities are

Ch. 2 Solutions
3/20/19 2-28

P
1
1
2
2
100 
32
16
123












2

3
4
P
0
0
2
2
010 
32
16
123












2

1
6
P
1
1
2
2
001 
32
16
123












2

1
12
(v) When the second SG device transmits particles with S
x
 and S
x
1 in a
coherent beam

2

P
1x
P
1x 
1

1
P
1x
P
1x 
1

P
1x
P
1x 1
1P
1x
P
1x 1
P
1x
1
1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4










1
0
0









14
122
14










P
1x
P
1x 1
14
122
14











14
122
14











12
0
12










1P
1xP
1x 1 100 
12
0
12










12

2
1
12
12
0
12











12
0
12










The three probabilities are

Ch. 2 Solutions
3/20/19 2-29

P
1
1
2
2
100 
12
0
12










2

1
2
P
00
2
2
010 
12
0
12










2
0
P
1
1
2
2
001 
12
0
12










2

1
2
(vi) When the second SG device transmits particles with S
x
0 and S
x
1 in a
coherent beam

2

P
0x
P
1x 
1

1
P
0x
P
1x 
1

P
0x
P
1x 1
1P
0x
P
1x 1
P
0x
P
1x 1
12
0
12











14
122
14











34
122
14










1P
0x
P
1x 1 100 
34
122
14










34

2
1
34
34
122
14











32
16
123












The three probabilities are

Ch. 2 Solutions
3/20/19 2-30

P
1
1
2
2
100 
32
16
123












2

3
4
P
0
0
2
2
010 
32
16
123












2

1
6
P
1
1
2
2
001 
32
16
123












2

1
12
(vii) When the second SG device transmits particles with S
x
 , S
x
0 , and S
x
1
in a coherent beam.

2

P
1xP
0xP
1x 
1

1P
1xP
0xP
1x 
1

P
1xP
0xP
1x 1
1P
1xP
0xP
1x 1
P
1x
1
1412214
12212122
1412214












1
0
0









14
122
14










P
1x
P
0x
P
1x 1
14
122
14











12
0
12











14
122
14











1
0
0








1P
1x
P
0x
P
1x 1 100 
1
0
0








1

2
1
0
0








which is 1 as expected. The three probabilities are

Ch. 2 Solutions
3/20/19 2-31

P
11
2
2
100 
1
0
0








2
1
P
0
0
2
2
100 
0
1
0








2
0
P
1
1
2
2
100 
0
0
1








2
0
The cumulated results are


2
P
1
P
0
P
1
1
x
1
4
1
2
1
4
0
x
1
2
0
1
2
1
x
1
4
1
2
1
4
1
x
&0
x
3
4
1
6
1
12
1
x
&1
x
1
2
0
1
2
0
x
&1
x
3
4
1
6
1
12
1
x
&0
x
&1
x
100

2.22 a) The probability of measuring spin up at the 2
nd
Stern-Gerlach analyzer and spin
down at the 3
rd
Stern-Gerlach analyzer is the product of the individual probabilities:

P
nzP
nP
nz
n
2

n
2
The 
n eigenstate is

n
cos

2
e
i
sin

2

so the probability is

P
nz
cos

2
e
i
sin

2
 
2
cos

2
e
i
sin

2
 
2
cos
2
2
sin
2
2

1
4
sin
2

b) To maximize the probability requires that 2 , and the probability is

P
nz

1
4
sin
2
2

1
4
c) If the 2
nd
Stern-Gerlach analyzer is removed, then the probability is

Ch. 2 Solutions
3/20/19 2-32

P
z

2
0
because the two states are orthogonal.

2.23 (a) The commutator is
A,BABBA
a
1
00
0a
2
0
00a
3










b
1
00
00b
2
0b
2
0











b
1
00
00b
2
0b
2
0










a
1
00
0a
2
0
00a
3










a
1
b
1
0 0
0 0a
2
b
2
0a
3
b
2
0











a
1
b
1
0 0
0 0a
3
b
2
0a
2
b
2
0










0 0 0
0 0 b
2
a
2
a
3
0b
2
a
3
a
2 0










0
so they do not commute.
(b) A is already diagonal, so the eigenvalues and eigenvectors are obtained by inspection.
The eigenvalues are
a
1
,a
2
,a
3
and the eigenvectors are
a
1
1
1
0
0








,   a
2
2
0
1
0








,   a
3
3
0
0
1








For B, diagonalization yields the eigenvalues
b
100
0b
2
0b
2











0     b
1

2
b
2
2
0 
   b
1
,b
2
,b
2
and the eigenvectors

Ch. 2 Solutions
3/20/19 2-33
b
100
00b
2
0b
20










u
v
w








b
1
u
v
w








      
b
1ub
1u
b
2wb
1v
b
2vb
1w
      wv0
u
2
v
2
w
2
1      u
2
1      u1,v0,w0      b
1
1
1
0
0








b
1
00
00b
2
0b
2
0










u
v
w








b
2
u
v
w








      
b
1
ub
2
u
b
2
wb
2
v
b
2
vb
2
w
      u0,  wv
b
2
b
2
1     v
2
w
2
1     u0,v
1
2
,w
1
2
     b
2

1
2
23
0
1
2
1
2










b
1
00
00b
2
0b
2
0










u
v
w








b
2
u
v
w








      
b
1
ub
2
u
b
2
wb
2
v
b
2
vb
2
w
      u0,  wv
b
2
b
2
1    v
2
w
2
1    u0,v
1
2
,w
1
2
    b
2

1
2
23
0
1
2

1
2











c) If B is measured, the possible results are the allowed eigenvalues b
1
,b
2
,b
2 . If the
initial state is 
i
2 , then the probabilities are

P
b
1
b
1

i
2
12
2
0
P
b
2
b
2

i
2

1
2
232
2

1
2
P
b
2
b
2

i
2

1
2
232
2

1
2
If A is then measured, the possible results are the allowed eigenvalues a
1
,a
2
,a
3 . If b2 was
the first result, then the new state is b
2 and when A is measured the subsequent
probabilities are

Ch. 2 Solutions
3/20/19 2-34

P
a
1
a
1
b
2
2
1
1
2
23
2
0
P
a
2
a
2
b
2
2
2
1
2
23
2

1
2
P
a
3
a
3
b
2
2
3
1
2
23
2

1
2
If -b2 was the first result, then the new state is b
2 and when A is measured the
subsequent probabilities are

P
a
1
a
1
b
2
2
1
1
2
23
2
0
P
a
2
a
2
b
2
2
2
1
2
23
2

1
2
P
a
3
a
3
b
2
2
3
1
2
23
2

1
2
d) If two operators do not commute, then the corresponding observables cannot be
measured simultaneously. Part (a) tells us that the operators A and B not commute. Part
(c) tells us that measurement B "disturbs" the measurement of A so the two measurements
are not compatible (cannot be made simultaneously).

2.24 (a) The eigenvalue equations for the S
z operator and the four eigenstates are
S
z

3
2

3
2

3
2
S
z
1
2

1
2

1
2
S
z
1
2

1
2

1
2
S
z
3
2

3
2

3
2
(b) The matrix representations of the S
z eigenstates are the unit vectors

3
2
1
0
0
0












,  
1
2
0
1
0
0












,  
1
2
0
0
1
0












,  
3
2
0
0
0
1












(c) The matrix representation of the S
z operator has the eigenvalues along the diagonal:
S
z

3
2
0 0 0
0
1
2
0 0
0 0
1
2
0
0 0 0
3
2














(d) The eigenvalue equations for the S
2 operator follow from the general equation S
2
sm
s
ss1
2
sm
s

Ch. 2 Solutions
3/20/19 2-35
S
2

3
2

15
4
2

3
2
S
2

1
2

15
4
2

1
2
S
2

1
2

15
4
2

1
2
S
2

3
2

15
4
2

3
2
where we have suppressed the s label.
(e) The matrix representation of the S
2 operator has the eigenvalues along the diagonal:
S
2
15
4
2
0 0 0
0
15
4
2
0 0
0 0
15
4
2
0
0 0 0
15
4
2















2.25 The projection operators P
 and P
 are represented by the matrices
P

10
00






,     P

00
01






The Hermitian adjoints of these matrices are obtained by transposing and complex
conjugating them, yielding
P

† 10
00






,     P

† 00
01






Since the Hermitian adjoints are equal to the original matrices, these operators are
Hermitian.

Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Full Download: http://alibabadownload.com/product/quantum-mechanics-a-paradigms-approach-1st-edition-mcintyre-solutions-manual/
This sample only, Download all chapters at: alibabadownload.com