Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Andersonasaa
9,120 views
35 slides
Apr 01, 2019
Slide 1 of 35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
About This Presentation
Full download : https://goo.gl/8hWvKv Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Size: 1013 KB
Language: en
Added: Apr 01, 2019
Slides: 35 pages
Slide Content
Ch. 2 Solutions
3/20/19 2-1
2.1 Let
S
x
ab
cd
and write the S
x eigenvalue equations in matrix notation
ab
cd
1
2
1
1
2
1
2
1
1
ab
cd
1
2
1
1
2
1
2
1
1
which yields
ab
2
cd
2
ab
2
cd
2
Solve by adding and subtracting the equations to get
a0 b
2
c
2
d0
Hence the matrix representing S
x in the S
z basis is
S
x
2
01
10
Let
S
y
ab
cd
and write the S
y eigenvalue equations in matrix notation
ab
cd
1
2
1
i
2
1
2
1
i
ab
cd
1
2
1
i
2
1
2
1
i
which yields
aib
2
cidi
2
aib
2
cidi
2
Solve by adding and subtracting the equations to get
a0 bi
2
ci
2
d0
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Full Download: http://alibabadownload.com/product/quantum-mechanics-a-paradigms-approach-1st-edition-mcintyre-solutions-manual/
This sample only, Download all chapters at: alibabadownload.com
Ch. 2 Solutions
3/20/19 2-2
Hence the matrix representing S
y in the S
z basis is
S
y
2
0i
i0
2.2 Solve the secular equation
detS
x
I0
2
2
0
Solve to find the eigenvalues
2
2
2
0
2
2
2
2
which was to be expected, because we know that the only possible results of a
measurement of any spin component are 2 . Find the eigenvectors. For the positive
eigenvalue:
2
01
10
a
b
2
a
b
yields
ba
The normalization condition yields
a
2
a
2
1
a
2
1
2
Choose a to be real and positive, resulting in
a
1
2
b
1
2
Ch. 2 Solutions
3/20/19 2-3
so the eigenvector corresponding to the positive eigenvalue is
x
1
2
1
1
Likewise, the eigenvector for the negative eigenvalue is
2
01
10
a
b
2
a
b
ba
The normalization condition yields
a
2
a
2
1
a
2
1
2
Choose a to be real and positive, resulting in
a
1
2
b
1
2
so the eigenvector corresponding to the negative eigenvalue is
x
1
2
1
1
2.3 From Eq. (1.37), we know the S
z eigenstates in the S
x basis:
1
2
x
x
1
2
x
x
Let the representation of S
z in the S
x basis be
S
z
ab
cd
and write the S
z eigenvalue equations in matrix notation
ab
cd
1
2
1
1
2
1
2
1
1
ab
cd
1
2
1
1
2
1
2
1
1
Ch. 2 Solutions
3/20/19 2-4
These yield
ab
2
cd
2
ab
2
cd
2
Solve by adding and subtracting the equations to get
a0 b
2
c
2
d0
Hence the matrix representing S
z in the S
x basis is
S
z
S
x2
01
10
Now diagonalize:
2
2
0
2
2
2
0
2
as expected. Find the eigenvectors:
2
01
10
a
b
2
a
b
ba
yielding
S
x
1
2
1
1
Likewise
2
01
10
a
b
2
a
b
ba
S
x
1
2
The uncertainties are
S
xS
x
2
S
x
2
2
2
0
2
S
y
S
y
2
S
y
2
2
2
2
2
0
S
zS
z
2
S
z
2
2
2
0
2
Ch. 2 Solutions
3/20/19 2-10
In the vector model, shown below, the spin is precessing around the y-axis at a constant
angle such the y-component of the spin is constant and x- and z-components oscillate
about zero.
Ch. 2 Solutions
3/20/19 2-11
In abstract notation, the commutators are
[S
2
,S
x
]S
x
2
S
y
2
S
z
2
,S
x
S
x
2
,S
x
S
y
2
,S
x
S
z
2
,S
x
S
x
2
S
x
S
x
S
x
2
S
y
2
S
x
S
x
S
y
2
S
z
2
S
x
S
x
S
z
2
S
x
3
S
x
3
S
y
S
y
S
x
S
x
S
y
S
y
S
z
S
z
S
x
S
x
S
z
S
z
0S
y
S
x
S
y
iS
z S
y
S
x
iS
z S
y
S
z
S
x
S
z
iS
y S
z
S
x
iS
y S
z
S
y
S
x
S
y
iS
y
S
z
S
y
S
x
S
y
iS
z
S
y
S
z
S
x
S
z
iS
z
S
y
S
z
S
x
S
z
iS
y
S
z
0
[S
2
,S
y
]S
x
2
S
y
2
S
z
2
,S
y
S
x
2
,S
y
S
y
2
,S
y
S
z
2
,S
y
S
x
2
S
y
S
y
S
x
2
S
y
2
S
y
S
y
S
y
2
S
z
2
S
y
S
y
S
z
2
S
x
S
x
S
y
S
y
S
x
S
x
S
y
3
S
y
3
S
z
S
z
S
y
S
y
S
z
S
z
S
x
S
y
S
x
iS
z S
x
S
y
iS
z S
x
0S
z
S
y
S
z
iS
x S
z
S
y
iS
x S
z
S
x
S
y
S
x
iS
x
S
z
S
x
S
y
S
x
iS
z
S
x
S
z
S
y
S
z
iS
z
S
x
S
z
S
y
S
z
iS
x
S
z
0
[S
2
,S
z
]S
x
2
S
y
2
S
z
2
,S
z
S
x
2
,S
z
S
y
2
,S
z
S
z
2
,S
z
S
x
2
S
z
S
z
S
x
2
S
y
2
S
z
S
z
S
y
2
S
z
2
S
z
S
z
S
z
2
S
x
S
x
S
z
S
z
S
x
S
x
S
y
S
y
S
z
S
z
S
y
S
y
S
z
3
S
z
3
S
x
S
z
S
x
iS
y S
x
S
z
iS
y S
x
S
y
S
z
S
y
iS
x S
y
S
z
iS
x S
y
0
S
x
S
z
S
x
iS
x
S
y
S
x
S
z
S
x
iS
y
S
x
S
y
S
z
S
y
iS
y
S
x
S
y
S
z
S
y
iS
x
S
y
0
2.12 For S
x the diagonalization yields the eigenvalues
S
x
2
010
101
010
2
0
2
2
0
2
0
2
2
2
2
20
2
2
0 1,0,1
and the eigenvectors
Ch. 2 Solutions
3/20/19 2-12
2
010
101
010
a
b
c
1
a
b
c
ba2
acb2
bc2
a
2
b
2
c
2
1 b
2
1
2
1
1
2 1 b
1
2
,a
1
2
,c
1
2
1
x
1
2
1
1
2
0
1
2
1
2
010
101
010
a
b
c
0
a
b
c
b0
ac0
b0
a
2
b
2
c
2
1 a
2
111 a
1
2
,b0,c
1
2
0
x
1
2
1
1
2
1
2
010
101
010
a
b
c
1
a
b
c
ba2
acb2
bc2
a
2
b
2
c
2
1 b
2
1
2
1
1
2 1 b
1
2
,a
1
2
,c
1
2
1
x
1
2
1
1
2
0
1
2
1
For S
y the diagonalization yields
S
y
2
0i0
i0i
0i0
i
2
0
i
2
i
2
0
i
2
0
2
2
2
i
2
i
20
2
2
0 ,0,
and the eigenvectors
2
0i0
i0i
0i0
a
b
c
1
a
b
c
iba2
iaicb2
ibc2
a
2
b
2
c
2
1 b
2
1
2
1
1
2 1 b
i
2
,a
1
2
,c
1
2
1
y
1
2
1
i
2
0
1
2
1
Ch. 2 Solutions
3/20/19 2-13
2
0i0
i0i
0i0
a
b
c
0
a
b
c
ib0
iaic0
ib0
a
2
b
2
c
2
1 a
2
111 a
1
2
,b0,c
1
2
0
y
1
2
1
1
2
1
2
0i0
i0i
0i0
a
b
c
1
a
b
c
iba2
iaicb2
ibc2
a
2
b
2
c
2
1 b
2
1
2
1
1
2 1 b
i
2
,a
1
2
,c
1
2
1
y
1
2
1
i
2
0
1
2
1
2.14 Using the component matrices we find
S
2
S
x
2
S
y
2
S
z
2
2
010
101
010
2
010
101
010
2
0i0
i0i
0i0
2
0i0
i0i
0i0
100
000
001
100
000
001
2
2
100
020
001
2
2
100
020
001
100
000
001
2
2
100
010
001
The eigenvalue equation is
S
2
smss1
2
sm
For spin-1 this is
S
2
1m2
2
1m
Hence the S
2 operator must be 2
2 times the identity matrix:
S
2
2
2
100
010
001
Ch. 2 Solutions
3/20/19 2-15
2.15 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are
P
1
1
in
2
1
2
29
1
3i
29
0
4
29
1
2
2
29
11
3i
29
10
4
29
11
2
4
29
2
16
29
The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S
x are always 1, 0, 1
for a spin-1 particle. The probabilities are
P
1x
x1
in
2
1
2
1
1
2
0
1
2
1
2
29
1
3i
29
0
4
29
1
2
1
29
3i
229
2
29
2
1
58
23i
2
11
58
The three probabilities add to unity, as they must.
c) For the first measurement, the expectation value is
S
z
mP
m
m
1
4
29
0
9
29
1
16
29
12
29
For the second measurement, the expectation value is
S
x
mP
mx
m
1
11
58
0
36
58
1
11
58
0
The histograms are shown below.
Ch. 2 Solutions
3/20/19 2-16
2.16 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are
P
1
1
in
2
1
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29
11
y
3i
29
10
y
4
29
11
y
2
2
29
1
2
3i
29
1
2
4
29
1
2
2
1
58
23i
2
11
58
P
0
0
in
2
0
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29
01
y
3i
29
00
y
4
29
01
y
2
2
29
i
2
3i
29
0
4
29
i
2
2
1
58
i24
2
36
58
P
1
1
in
2
1
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29
11
y
3i
29
10
y
4
29
11
y
2
2
29
1
2
3i
29
1
2
4
29
1
2
2
1
58
23i
2
11
58
The three probabilities add to unity, as they must.
b) The possible results of a measurement of the spin component S
y are always 1, 0, 1
for a spin-1 particle. The probabilities are
P
1y
y
1
in
2
y
1
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29y
11
y
3i
29y
10
y
4
29y
11
y
2
2
29
2
4
29
P
0y
y
0
in
2
y
0
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29y
01
y
3i
29y
00
y
4
29y
01
y
2
3i
29
2
9
29
Ch. 2 Solutions
3/20/19 2-17
P
1y
y
1
in
2
y
1
2
29
1
y
3i
29
0
y
4
29
1
y
2
2
29y
11
y
3i
29y
10
y
4
29y
11
y
2
4
29
2
16
29
The three probabilities add to unity, as they must.
c) For the first measurement, the expectation value is
S
z
mP
m
m
1
11
58
0
36
58
1
11
58
0
For the second measurement, the expectation value is
S
y
mP
my
m
1
4
29
0
9
29
1
16
29
12
29
The histograms are shown below.
2.17 a) The possible results of a measurement of the spin component S
z are always 1, 0, 1
for a spin-1 particle. The probabilities are
P
1
1
in
2
1
1
14
1
3
14
0
2i
14
1
2
1
14
11
3
14
10
2i
14
11
2
2i
14
2
4
14
b) After the S
z measurement, the system is in the state 1 . The possible results of a
measurement of the spin component S
x are always 1, 0, 1 for a spin-1 particle.
The probabilities are
P
1x
x
1
in
2
1
2
1
1
2
0
1
2
1 1
2
1
2
2
1
4
P
0x
x
0
in
2
1
2
1
1
2
1 1
2
1
2
2
1
2
P
1x
x
1
in
2
1
2
1
1
2
0
1
2
1 1
2
1
2
2
1
4
c) Schematic of experiment.
Ch. 2 Solutions
3/20/19 2-19
2.19 The probability is
2.20 Spin 1 unknowns. Follow the solution method given in the lab handout. (i) For
unknown number 1, the measured probabilities are
P
1
1
4
P
1x
1
4
P
1y1
P
0
1
2
P
0x
1
2
P
0y0
P
1
1
4
P
1x
1
4
P
1y
0
Write the unknown state as
Ch. 2 Solutions
3/20/19 2-20
1
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives
P
1
1
1
2
1a1b0c1
2
a
2
1
4
a
1
2
P
0
0
1
2
0a1b0c1
2
b
2
1
2
b
1
2
e
i
P
1
1
1
2
1a1b0c1
2
c
2
1
4
c
1
4
e
i
allowing for possible relative phases. So now the unknown state is
1
1
2
1
1
2
e
i
0
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives
P
0x
x
0
1
2
1
2
11
1
2
1
1
2
e
i
0
1
2
e
i
1
2
1
22
1e
i
2
1
8
1e
i
1e
i
1
8
11e
i
e
i
1
4
1cos
1
2
cos1
Giving the state
1
1
2
1
1
2
e
i
0
1
2
1
Equating the predicted S
y probabilities and the experimental results gives
P
1y
y
1
1
2
1
2
1
i
2
0
1
2
1
1
2
1
1
2
e
i
0
1
2
1
2
1
4
i
2
e
i
1
4
2
1
4
1ie
i
1ie
i
1
4
11ie
i
ie
i
1
2
1sin 1sin1
2
Hence the unknown state is
1
1
2
1
1
2
e
i
2
0
1
2
1
1
2
1
i
2
0
1
2
11
y
(ii) For unknown number 2, the measured probabilities are
P
1
1
4
P
1x
9
16
P
1y0.870
P
0
1
2
P
0x
3
8
P
0y0.125
P
1
1
4
P
1x
1
16
P
1y
0.005
Write the unknown state as
2
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives
Ch. 2 Solutions
3/20/19 2-21
P
1
1
2
2
1a1b0c1
2
a
2
1
4
a
1
2
P
0
0
2
2
0a1b0c1
2
b
2
1
2
b
1
2
e
i
P
1
1
2
2
1a1b0c1
2
c
2
1
4
c
1
2
e
i
allowing for possible relative phases. So now the unknown state is
2
1
2
1
1
2
e
i
0
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives
P
1y
y
1
2
2
1
2
1
i
2
0
1
2
1
1
2
1
1
2
e
i
0
1
2
e
i
1
2
1
4
i
2
e
i
1
4
e
i
2
1
16
12ie
i
e
i
12ie
i
e
i
1
16
64sin2cos4sin
1
16
64sin2cos4sincos4cossin
1
16
76sin4cossin 0.87
which gives
Ch. 2 Solutions
3/20/19 2-22
3sin2cossin3.4623
2cossin233sin
4cos
2
sin
2
12123sin9sin
2
41sin
2
3
4
12123sin9sin
2
sin
2
3sin
3
4
0
sin
3
2
0
sin
3
2
3
,
2
3
3
2
3
Hence the unknown state is
2
1
2
1
1
2
e
i
3
0
1
2
e
i
2
3
11
n
2
,
3
(iii) For unknown number 3, the measured probabilities are
P
1
1
3
P
1x
1
6
P
1y0.0286
P
0
1
3
P
0x
2
3
P
0y0
P
1
1
3
P
1x
1
6
P
1y
0.9714
Write the unknown state as
3
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives
P
1
1
3
2
1a1b0c1
2
a
2
1
3
a
1
3
P
0
0
3
2
0a1b0c1
2
b
2
1
3
b
1
3
e
i
P
1
1
3
2
1a1b0c1
2
c
2
1
3
c
1
3
e
i
allowing for possible relative phases. So now the unknown state is
3
1
3
1
1
3
e
i
0
1
3
e
i
1
Equating the predicted S
x probabilities and the experimental results gives
P
0x
x0
3
2
1
2
11
1
3
1e
i
0e
i
1
2
1
6
1e
i
2
1
6
1e
i
1e
i
1
6
11e
i
e
i
1
3
1cos
2
3
cos1
Equating the predicted S
y probabilities and the experimental results gives
Ch. 2 Solutions
3/20/19 2-23
P
1y
y
1
3
2
1
2
1
i
2
0
1
2
1
1
3
1e
i
01
2
1
3
1
2
i
2
e
i
1
2
2
1
3
1
i
2
e
i
1
i
2
e
i
1
3
3
2
2sin 0.0286
sin1
3
2
Hence the unknown state is
3
1
3
1
i
3
0
1
3
1m
n
(iv) For unknown number 4, the measured probabilities are
P
1
1
2
P
1x
1
4
P
1y
1
4
P
00P
0x
1
2
P
0y
1
2
P
1
1
2
P
1x
1
4
P
1y
1
4
Write the unknown state as
4
a1b0c1
Equating the predicted S
z probabilities and the experimental results gives
P
1
1
4
2
1a1b0c1
2
a
2
1
2
a
1
2
P
0
0
4
2
0a1b0c1
2
b
2
0 b0
P
1
1
4
2
1a1b0c1
2
c
2
1
2
c
1
2
e
i
allowing for possible relative phases. So now the unknown state is
4
1
2
1
1
2
e
i
1
Equating the predicted S
x probabilities and the experimental results gives
P
0x
x
0
4
2
1
2
11
1
2
1e
i
1
2
1
2
1e
i
2
1
4
1e
i
1e
i
1
4
11e
i
e
i
1
2
1cos
1
2
cos0
2
,
3
2
Giving
4
1
2
1i1
with no more info from Sx, Sy, Sz measurements. In the SPINS program choose n at
angles = 90˚, = 45˚, 225˚ to see that the unknown state is
4
1
2
1i1 0
n
2
,
4
0
n
2
,
5
4
Ch. 2 Solutions
3/20/19 2-24
2.21. The spin-1 interferometer had an S
z SG device, an S
x deveice, and an S
z SG
device. The S
z eigenstates are 1,0,1 . The S
x eigenstates are
1
x
1
2
1
1
2
0
1
2
1
0
x
1
2
1
1
2
1
1
x
1
2
1
1
2
0
1
2
1 .
Let
i be the quantum state after the i
th
Stern-Gerlach device. The first SG device
transmit particles with S
z
, so the state
1 is
1
1 .
The second SG device transmits particles in 1, 2, or 3 of the S
x eigenstates 1
x
,0
x
,1
x
. To find
2 , we use the projection postulate:
2
P
n
1
1P
n
1
where Pn is the projection operator onto the measured states. For example, if the second
SG device transmits particles with S
x
, we get
2
P
1x
1
1P
1x
1
1
x x
11
11
x x
11
1
x
as expected. In matrix notation, the S
x eigenstates are
1
x
12
12
12
0
x
12
0
12
1
x
12
12
12
and the projection operators are
Ch. 2 Solutions
3/20/19 2-25
P
1x
1
x x
1
1
2
1
2
1
2
1
2
1
2
1
2
1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4
P
0x
0
x x
0
1
2
0
1
2
1
2
0
1
2
1
20
1
2
000
1
20
1
2
P
1x
1
x x
1
1
2
1
2
1
2
1
2
1
2
1
2
1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4
The probability of measuring a result after the third SG device is
P
2
3
2 . We
want to calculate the three probabilities
P
1
1
2
2
P
0
0
2
2
P
1
1
2
2
for all possible (7) cases of 1 beam, 2 beams, or 3 beams from SG2.
(i) When the second SG device transmits particles with S
x
1 only:
2
P
1x
1
1P
1x
1
P
1x
1
1P
1x1
P
1x1
1
4
1
22
1
4
1
22
1
2
1
22
1
4
1
22
1
4
1
0
0
1
4
1
22
1
4
1P
1x
1 100
1
4
1
22
1
4
14
2
1
14
1
4
1
22
1
4
1
2
1
2
1
2
which is 1
x as expected. The three probabilities are
Ch. 2 Solutions
3/20/19 2-26
P
1
1
2
2
100
1
2
1
2
1
2
2
1
4
P
0
0
2
2
010
1
2
1
2
1
2
2
1
2
P
1
1
2
2
001
1
2
1
2
1
2
2
1
4
(ii) When the second SG device transmits particles with S
x
0 ,
2
0
x and the
three probabilities are
P
1
1
2
2
100
1
2
0
1
2
2
1
2
P
00
2
2
010
1
2
0
1
2
2
0
P
1
1
2
2
001
1
2
0
1
2
2
1
2
(iii) When the second SG device transmits particles with S
x
1 ,
2
1
x and the
three probabilities are
2
P
1
P
0
P
1
1
x
1
4
1
2
1
4
0
x
1
2
0
1
2
1
x
1
4
1
2
1
4
1
x
&0
x
3
4
1
6
1
12
1
x
&1
x
1
2
0
1
2
0
x
&1
x
3
4
1
6
1
12
1
x
&0
x
&1
x
100
2.22 a) The probability of measuring spin up at the 2
nd
Stern-Gerlach analyzer and spin
down at the 3
rd
Stern-Gerlach analyzer is the product of the individual probabilities:
P
nzP
nP
nz
n
2
n
2
The
n eigenstate is
n
cos
2
e
i
sin
2
so the probability is
P
nz
cos
2
e
i
sin
2
2
cos
2
e
i
sin
2
2
cos
2
2
sin
2
2
1
4
sin
2
b) To maximize the probability requires that 2 , and the probability is
P
nz
1
4
sin
2
2
1
4
c) If the 2
nd
Stern-Gerlach analyzer is removed, then the probability is
Ch. 2 Solutions
3/20/19 2-32
P
z
2
0
because the two states are orthogonal.
2.23 (a) The commutator is
A,BABBA
a
1
00
0a
2
0
00a
3
b
1
00
00b
2
0b
2
0
b
1
00
00b
2
0b
2
0
a
1
00
0a
2
0
00a
3
a
1
b
1
0 0
0 0a
2
b
2
0a
3
b
2
0
a
1
b
1
0 0
0 0a
3
b
2
0a
2
b
2
0
0 0 0
0 0 b
2
a
2
a
3
0b
2
a
3
a
2 0
0
so they do not commute.
(b) A is already diagonal, so the eigenvalues and eigenvectors are obtained by inspection.
The eigenvalues are
a
1
,a
2
,a
3
and the eigenvectors are
a
1
1
1
0
0
, a
2
2
0
1
0
, a
3
3
0
0
1
For B, diagonalization yields the eigenvalues
b
100
0b
2
0b
2
0 b
1
2
b
2
2
0
b
1
,b
2
,b
2
and the eigenvectors
Ch. 2 Solutions
3/20/19 2-33
b
100
00b
2
0b
20
u
v
w
b
1
u
v
w
b
1ub
1u
b
2wb
1v
b
2vb
1w
wv0
u
2
v
2
w
2
1 u
2
1 u1,v0,w0 b
1
1
1
0
0
b
1
00
00b
2
0b
2
0
u
v
w
b
2
u
v
w
b
1
ub
2
u
b
2
wb
2
v
b
2
vb
2
w
u0, wv
b
2
b
2
1 v
2
w
2
1 u0,v
1
2
,w
1
2
b
2
1
2
23
0
1
2
1
2
b
1
00
00b
2
0b
2
0
u
v
w
b
2
u
v
w
b
1
ub
2
u
b
2
wb
2
v
b
2
vb
2
w
u0, wv
b
2
b
2
1 v
2
w
2
1 u0,v
1
2
,w
1
2
b
2
1
2
23
0
1
2
1
2
c) If B is measured, the possible results are the allowed eigenvalues b
1
,b
2
,b
2 . If the
initial state is
i
2 , then the probabilities are
P
b
1
b
1
i
2
12
2
0
P
b
2
b
2
i
2
1
2
232
2
1
2
P
b
2
b
2
i
2
1
2
232
2
1
2
If A is then measured, the possible results are the allowed eigenvalues a
1
,a
2
,a
3 . If b2 was
the first result, then the new state is b
2 and when A is measured the subsequent
probabilities are
Ch. 2 Solutions
3/20/19 2-34
P
a
1
a
1
b
2
2
1
1
2
23
2
0
P
a
2
a
2
b
2
2
2
1
2
23
2
1
2
P
a
3
a
3
b
2
2
3
1
2
23
2
1
2
If -b2 was the first result, then the new state is b
2 and when A is measured the
subsequent probabilities are
P
a
1
a
1
b
2
2
1
1
2
23
2
0
P
a
2
a
2
b
2
2
2
1
2
23
2
1
2
P
a
3
a
3
b
2
2
3
1
2
23
2
1
2
d) If two operators do not commute, then the corresponding observables cannot be
measured simultaneously. Part (a) tells us that the operators A and B not commute. Part
(c) tells us that measurement B "disturbs" the measurement of A so the two measurements
are not compatible (cannot be made simultaneously).
2.24 (a) The eigenvalue equations for the S
z operator and the four eigenstates are
S
z
3
2
3
2
3
2
S
z
1
2
1
2
1
2
S
z
1
2
1
2
1
2
S
z
3
2
3
2
3
2
(b) The matrix representations of the S
z eigenstates are the unit vectors
3
2
1
0
0
0
,
1
2
0
1
0
0
,
1
2
0
0
1
0
,
3
2
0
0
0
1
(c) The matrix representation of the S
z operator has the eigenvalues along the diagonal:
S
z
3
2
0 0 0
0
1
2
0 0
0 0
1
2
0
0 0 0
3
2
(d) The eigenvalue equations for the S
2 operator follow from the general equation S
2
sm
s
ss1
2
sm
s
Ch. 2 Solutions
3/20/19 2-35
S
2
3
2
15
4
2
3
2
S
2
1
2
15
4
2
1
2
S
2
1
2
15
4
2
1
2
S
2
3
2
15
4
2
3
2
where we have suppressed the s label.
(e) The matrix representation of the S
2 operator has the eigenvalues along the diagonal:
S
2
15
4
2
0 0 0
0
15
4
2
0 0
0 0
15
4
2
0
0 0 0
15
4
2
2.25 The projection operators P
and P
are represented by the matrices
P
10
00
, P
00
01
The Hermitian adjoints of these matrices are obtained by transposing and complex
conjugating them, yielding
P
† 10
00
, P
† 00
01
Since the Hermitian adjoints are equal to the original matrices, these operators are
Hermitian.
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Full Download: http://alibabadownload.com/product/quantum-mechanics-a-paradigms-approach-1st-edition-mcintyre-solutions-manual/
This sample only, Download all chapters at: alibabadownload.com