8 1 Introduction
4. E. Schrödinger, Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. d. Phys.79,
361–376 (1926)
5. W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen. Z. Phys.33, 879–893 (1925)
6. P.A.M. Dirac,The Principles of Quantum Mechanics(Oxford University Press, Oxford, 1935),
p. 34
7. C.N. Yang, Square Root of Minus One, Complex Phases and Erwin Schrödinger, inSchrödinger
– Centenary Celebration of a Polymath, ed. by C.W. Kilmister (Cambridge University Press,
Cambridge, 1987), p. 53
8. E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences. Richard
courant lecture in mathematical sciences delivered at New York University, May 11, 1959.
Commun. Pure Appl. Math.13, 1–14 (1960)
9. S. Weinberg, Testing quantum mechanics. Ann. Phys. (N.Y.)194, 336–386 (1989)
10. I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics. Ann. Phys. (N.Y.)100, 62–93
(1976)
11. N. Gisin, Weinberg’s non-linear quantum mechanics and supraluminal communications. Phys.
Lett. A143, 1–2 (1990)
12. N. Gisin, Relevant and Irrelevant Nonlinear Schrödinger Equations, inNonlinear, Deformed
and Irreversible Quantum Systems, ed. by H.-D. Doebner, V.K. Dobrev, P. Nattermann (World
Scientific, Singapore, 1995), pp. 109–119
13. G.A. Goldin, Diffeomorphism Group Representation and Quantum Nonlinearity: Gauge Trans-
formations and Measurement, inNonlinear, Deformed and Irreversible Quantum Systems,ed.
by H.-D. Doebner, V.K. Dobrev, P. Nattermann (World Scientific, Singapore, 1995), pp. 125–
139
14. W. Lücke, Nonlinear Schrödinger Dynamics and Nonlinear Observables, inNonlinear,
Deformed and Irreversible Quantum Systems, ed. by H.-D. Doebner, V.K. Dobrev, P. Nat-
termann (World Scientific, Singapore, 1995), pp. 140–154