SlidePub
Home
Categories
Login
Register
Home
General
Recurrence relations
Recurrence relations
muhammadzawawi1
18,893 views
18 slides
Mar 05, 2015
Slide
1
of 18
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
About This Presentation
discrete math
Size:
254.72 KB
Language:
en
Added:
Mar 05, 2015
Slides:
18 pages
Slide Content
Slide 1
Counting
Slide 2
Recurrence Relations
Sequencesare ordered lists of elements.
•1,2,3,5,8
•1,3,9,27,81,…
Sequences arise throughout mathematics, computer
science, and in many other disciplines, ranging from
botany to music.
We will introduce the terminology to represent
sequences.
© S. Turaev, CSC 1700 Discrete Mathematics 2
Slide 3
Recurrence Relations
Definition: A sequenceis a function from a subset of the
integers (usually either the set 0,1,2,3,4,…or
1,2,3,4,…) to a set ????????????.
The notation ????????????
????????????is used to denote the image of the
integer ????????????. We can think of ????????????
????????????as the equivalent of
????????????
????????????where ????????????is a function from 0,1,2,…to ????????????. We
call ????????????
????????????a termof the sequence.
Example: Consider the sequence ????????????
????????????where ????????????
????????????=1/????????????.
Then
1,
1
2
,
1
3
,
1
4
,…
© S. Turaev, CSC 1700 Discrete Mathematics 3
Slide 4
Recurrence Relations
Definition: A recurrence relation for the sequence ????????????
????????????is
an equation that expresses ????????????
????????????in terms of one or more of
the previous terms of the sequence, namely,
????????????
0,????????????
1,…,????????????
????????????−1, for all integers ???????????? with ????????????≥????????????
0, where ????????????
0
is a nonnegative integer.
A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.
The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.
© S. Turaev, CSC 1700 Discrete Mathematics 4
Slide 5
Recurrence Relations
Example: Let ????????????
????????????be a sequence that satisfies the
recurrence relation ????????????
????????????=????????????
????????????−1+3for ????????????=1,2,3,4,…
and suppose that ????????????
0=2. What are ????????????
1,????????????
2and ????????????
3?
[Here the initial condition is ????????????
0=2.]
Example: Let ????????????
????????????be a sequence that satisfies the
recurrence relation ????????????
????????????=????????????
????????????−1−????????????
????????????−2for ????????????=2,3,4,…
and suppose that ????????????
0=3and ????????????
1=5. What are ????????????
2and
????????????
3?
[Here the initial conditions are ????????????
0=3and ????????????
1=5.]
© S. Turaev, CSC 1700 Discrete Mathematics 5
Slide 6
Fibonacci Numbers
Definition:the Fibonacci sequence, ????????????
0,????????????
1,????????????
2,…,is
defined by:
Initial Conditions: ????????????
0=0,????????????
1=1
Recurrence Relation: ????????????
????????????=????????????
????????????−1+????????????
????????????−2
Example: Find ????????????
4,????????????
5,????????????
6,????????????
7and ????????????
8.
© S. Turaev, CSC 1700 Discrete Mathematics 6
Slide 7
Recurrence Relations
Finding a formula for the ????????????th term of the sequence
generated by a recurrence relation is called solving the
recurrence relation.
Such a formula is called a explicit(closed) formula.
One technique for finding an explicit formula for the
sequence defined by a recurrence relation is
backtracking.
© S. Turaev, CSC 1700 Discrete Mathematics 7
Slide 8
Recurrence Relations
Example: Let ????????????
????????????be a sequence that satisfies the
recurrence relation ????????????
????????????=????????????
????????????−1+3for ????????????=2,3,4,…and
suppose that ????????????
1=2. Find an explicit formula for the
sequence.
????????????
????????????=????????????
????????????−1+3
=????????????
????????????−2+3+3=????????????
????????????−2+2⋅3
=????????????
????????????−3+3+2⋅3=????????????
????????????−3+3⋅3
⋯
=????????????
2+
????????????−2⋅3=????????????
1+3+????????????−2⋅3
=????????????
1+
????????????−1⋅3=2+????????????−1⋅3
=3⋅????????????−1
© S. Turaev, CSC 1700 Discrete Mathematics 8
Slide 9
Recurrence Relations : Backtracking
Example 1: ????????????
????????????=5????????????
????????????−1+3, ????????????
1=3.
Example 2:????????????
????????????=????????????
????????????−1+????????????, ????????????
1=4.
Example 3:????????????
????????????=????????????⋅????????????
????????????−1, ????????????
1=6.
© S. Turaev, CSC 1700 Discrete Mathematics 9
Slide 10
Fibonacci Numbers
Definition:the Fibonacci sequence, ????????????
0,????????????
1,????????????
2,…,is
defined by:
Initial Conditions: ????????????
0=0,????????????
1=1
Recurrence Relation: ????????????
????????????=????????????
????????????−1+????????????
????????????−2
Example: Find ????????????
4,????????????
5,????????????
6,????????????
7and ????????????
8.
© S. Turaev, CSC 1700 Discrete Mathematics 10
Slide 11
Linear Homogeneous Recurrence Relations
Definition: A linear homogeneous recurrence relation of
degree ????????????with constant coefficients is a recurrence
relation of the form
????????????
????????????=????????????
1????????????
????????????−1+????????????
2????????????
????????????−2+⋯+????????????
????????????????????????
????????????−????????????
where ????????????
1,????????????
2,…,????????????
????????????are real numbers, and ????????????
????????????≠0.
© S. Turaev, CSC 1700 Discrete Mathematics
•it is linearbecause the right- hand side is a sum of the previous
terms of the sequence each multiplied by a function of ???????????? .
•it is homogeneous because no terms occur that are not
multiples of the ????????????
????????????s. Each coefficient is a constant.
•the degreeis????????????because ????????????
????????????is expressed in terms of the
previous ????????????terms of the sequence.
11
Slide 12
Linear Homogeneous Recurrence Relations
????????????
????????????=1.11????????????
????????????−1
????????????
????????????=????????????
????????????−1+????????????
????????????−2
????????????
????????????=????????????
????????????−1+????????????
????????????−2
2
ℎ
????????????=2ℎ
????????????−1+1
????????????
????????????=????????????????????????
????????????−1
© S. Turaev, CSC 1700 Discrete Mathematics 12
Slide 13
Linear Homogeneous Recurrence Relations
????????????
????????????=1.11????????????
????????????−1
????????????
????????????=????????????
????????????−1+????????????
????????????−2
????????????
????????????=????????????
????????????−1+????????????
????????????−2
2
ℎ
????????????=2ℎ
????????????−1+1
????????????
????????????=????????????????????????
????????????−1
© S. Turaev, CSC 1700 Discrete Mathematics
linear homogeneous recurrence
relation of degree 1
linear homogeneous recurrence
relation of degree 2
not linear
not homogeneous
coefficients are not constants
13
Slide 14
Linear Homogeneous Recurrence Relations
The basic approach is to look for solutions of the form
????????????
????????????=????????????
????????????
,where ????????????is a constant.
Note that ????????????
????????????=????????????
????????????
is a solution to the recurrence
relation
????????????
????????????=????????????
1????????????
????????????−1+????????????
2????????????
????????????−2+⋯+????????????
????????????????????????
????????????−????????????
if and only if
????????????
????????????
=????????????
1????????????
????????????−1
+????????????
2????????????
????????????−2
+⋯+????????????
????????????????????????
????????????−????????????
.
© S. Turaev, CSC 1700 Discrete Mathematics 14
Slide 15
Linear Homogeneous Recurrence Relations
Algebraic manipulation yields the characteristic
equation:
????????????
????????????
−????????????
1????????????
????????????−1
−????????????
2????????????
????????????−2
−⋯−????????????
????????????=0
The sequence ????????????
????????????with ????????????
????????????=????????????
????????????
is a solutionif and
only if ????????????is a solution to the characteristic equation.
© S. Turaev, CSC 1700 Discrete Mathematics 15
Slide 16
Linear Homogeneous Recurrence Relations
Theorem: If the characteristic equation
????????????
2
−????????????
1????????????−????????????
2=0
of the recurrence relation ????????????
????????????=????????????
1????????????
????????????−1+????????????
2????????????
????????????−2has two
distinct roots, ????????????
1and ????????????
2, then
????????????
????????????=????????????????????????
1
????????????+????????????????????????
2
????????????
where ????????????and ????????????depend on the initial conditions, is the
explicit formula for the sequence.
© S. Turaev, CSC 1700 Discrete Mathematics 16
Slide 17
Linear Homogeneous Recurrence Relations
Theorem: If the characteristic equation
????????????
2
−????????????
1????????????−????????????
2=0
of the recurrence relation ????????????
????????????=????????????
1????????????
????????????−1+????????????
2????????????
????????????−2has a
single root, ????????????, then
????????????
????????????=????????????????????????
????????????
+????????????????????????????????????
????????????
where ????????????and ????????????depend on the initial conditions, is the
explicit formula for the sequence.
© S. Turaev, CSC 1700 Discrete Mathematics 17
Slide 18
Linear Homogeneous Recurrence Relations
Example 1: Find an explicit formula for the sequence
defined by ????????????
????????????=4????????????
????????????−1+5????????????
????????????−2with the initial
conditions ????????????
1=2and ????????????
2=6.
Example 2: Find an explicit formula for the sequence
defined by ????????????
????????????=−6????????????
????????????−1−9????????????
????????????−2with the initial
conditions ????????????
1=2.5and ????????????
2=4.7.
Example3 (Fibonacci sequence): Find an explicit formula
for the sequence defined by ????????????
????????????=????????????
????????????−1+????????????
????????????−2with the
initial conditions ????????????
0=0and ????????????
1=1.
© S. Turaev, CSC 1700 Discrete Mathematics 18
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
18,893
Slides
18
Favorites
13
Age
3925 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
31 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
32 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
30 views
14
Fertility awareness methods for women in the society
Isaiah47
29 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
26 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
28 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-18)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better