replication-pcr use for laboratory 1.ppt

mdenterprise2026 9 views 22 slides Feb 26, 2025
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

laboratory use


Slide Content

©2000 Timothy G. Standish
DNA ReplicationDNA Replication
and theand the
Polymerase Chain ReactionPolymerase Chain Reaction
Md Tausif Raza, M.Sc., Ph. D.
Microbiologist
Sadar Hospital, Siwan, Bihar
[email protected]
9650876720

©2000 Timothy G. Standish
HistoryHistory
The Polymerase Chain Reaction (PCR) was not
a discovery, but rather an invention
A special DNA polymerase (Taq) is used to
make many copies of a short length of DNA
(100-10,000 bp) defined by primers
Kary Mullis, the inventor of PCR, was awarded
the 1993 Nobel Prize in Chemistry

©2000 Timothy G. Standish
What PCR Can DoWhat PCR Can Do
PCR can be used to make many copies of any DNA that is supplied as
a template
Starting with one original copy an almost infinite number of copies
can be made using PCR
“Amplified” fragments of DNA can be sequenced, cloned, probed or
sized using electrophoresis
Defective genes can be amplified to diagnose any number of illnesses
Genes from pathogens can be amplified to identify them (i.e., HIV)
Amplified fragments can act as genetic fingerprints

©2000 Timothy G. Standish
How PCR WorksHow PCR Works
PCR is an artificial way of doing DNA replication
Instead of replicating all the DNA present, only a
small segment is replicated, but this small
segment is replicated many times
As in replication, PCR involves:
–Melting DNA
–Priming
–Polymerization

©2000 Timothy G. Standish
Initiation - Forming the Initiation - Forming the
Replication EyeReplication Eye
3’ 5’
3’5’
5’
5’
3’
3’
Origin of Replication
5’
3’
3’
5’
5’
3’
5’
5’
5’
3’
3’
3’

©2000 Timothy G. Standish
Leading Strand
Lagging Strand
3’
5’
3’
5’
Extension - The Replication ForkExtension - The Replication Fork
5’
5’
5’
3’
3’
5’
3’
3’
5’
Single-strand
binding
proteins
DNA
Polymerase
Okazaki
fragment
RNA
Primers
Primase
5’
3’
5’
Helicase

©2000 Timothy G. Standish
Functions And Their Functions And Their
Associated EnzymesAssociated Enzymes
Ligase
Joining nicks
DNA Polymerase
Polymerizing DNA
Primase
Providing primer
EnzymeFunction
Helicase
SSB Proteins
Topisomerase
Melting DNA

©2000 Timothy G. Standish
Components of a PCR Components of a PCR
ReactionReaction
Buffer (containing Mg
++
)
Template DNA
2 Primers that flank the fragment of DNA
to be amplified
dNTPs
Taq DNA Polymerase (or another
thermally stable DNA polymerase)

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
5’3’
3’5’
3’5’
5’
5’3’
5’
3’5’
5’
5’
5’
5’3’
3’5’
3’5’
5’3’
5’3’
5’

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
5’3’
3’5’

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
3’5’
5’3’
Heat

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
3’5’
5’3’
5’
5’
Melting
94
o
C

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
3’5’
5’3’
Heat
Heat
5’
5’
5’

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
3’5’
5’3’
5’
5’
5’
5’
5’
5’

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
3’5’
5’3’
5’
5’
5’
5’
5’
5’
Heat
Heat

©2000 Timothy G. Standish
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
3’5’
5’3’
5’
5’
5’
5’
5’
5’
5’
5’
5’
5’

©2000 Timothy G. Standish
Fragments of
defined length
PCRPCR
Melting
94
o
C
Melting
94
o
C
Annealing
Primers
50
o
C
Extension
72
o
C
T
e
m
p
e
r
a
t
u
r
e
100
0
50
T i m e
30x
3’5’
5’3’
5’
5’
5’
5’
5’
5’
5’
5’
5’
5’

©2000 Timothy G. Standish
DNA Between The Primers Doubles DNA Between The Primers Doubles
With Each Thermal CycleWith Each Thermal Cycle
0
Cycles
Number
1
3
8
2
4
1
2
4
16
5
32
6
64

©2000 Timothy G. Standish
More Cycles = More DNAMore Cycles = More DNA
Number of cycles
0 10 15 20 25 30
Size
Marker

©2000 Timothy G. Standish
Theoretical Yield Of PCRTheoretical Yield Of PCR
Theoretical yield = 2
n
x y
Where y = the starting
number of copies and
n = the number of thermal cycles
= 107,374,182,400
If you start with 100 copies, how many copies are
made in 30 cycles?
2
n
x y
= 2
30
x 100
= 1,073,741,824 x 100

©2000 Timothy G. Standish
How The Functions Of Replication How The Functions Of Replication
Are Achieved During PCRAre Achieved During PCR
N/A as fragments are shortJoining nicks
Taq DNA PolymerasePolymerizing DNA
Primers are added to the
reaction mix
Providing primer
PCRFunction
Heat
Melting DNA

©2000 Timothy G. Standish
Tags