Applications of RNS
•[5] Freking, W.L., and Parhi, K.K., "Low-power FIR digital filters using residue
arithmetic, " in Conf. Record 31st Asil. Conf. Signals, Syst. and Comput. (ACSSC
1997), vol. 1, Pacific Grove, CA USA [1997], 739-43.
•[6] D'Amora, A. et al., "Reducing power dissipation in complex digital filters by using
the quadratic residue number system, " in Conf. Record 34th Asil. Conf. Signals, Syst.
Comput. (ACSSC 2000), vol. 2, Pacific Grove, CA USA [2000], 879-83.
•[7] Cardarilli, G.C. et al., "Low-power implementation of polyphase filters in Quadratic
Residue Number system," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS 2004), vol. 2,
Vancouver, BC, Canada [2004], 725-728.
•[8] Shanbag, N.R., and Siferd, R.E., A single-chip pipelined 2-D FIR filter using residue
Arithmetic, IEEE JSSC -26[1991], 796-805.
•[9] Tuukka Toivonen., and Janne Heikkilä., Video Filtering With Fermat Number
Theoretic Transforms Using Residue Number System, IEEE CSVT-16[2006], 128-135.
•[10] Schwemmlein, J., and Posch, K.C., Reinhard Posch. RNS-modulo reduction upon
a restricted base value set and its applicability to RSA cryptography, Computer &
Security [1998], 17, 637-650.
•[11]Hanae Nozaki., Masahiko Motoyama., Atsushi Shimbo., and Shinichi Kawamura.,
Implementation of RSA algorithm based on RNS Montgomery multiplication, In C. Paar
(ed). Cryptographic Hardware and Embedded Systems – CHES, Springer-Verlag,
Berlin, Germany [2001], 364-376.