Resistance measurement of all ranges resistances

Masoom38 6 views 21 slides May 15, 2025
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Electrical and electronics measurement


Slide Content

Dr. Sk Babar Ali
Associate Professor
Department of ECE
Aliah University, New Town, Kolkata

Measurement of resistance
Propertiesofresistancesplayanimportantroleindeterminingperformance
specificationsforvariouscircuitelementsincludingcoils,windings,insulations,etc.
Itisimportantinmanycasestohavereasonablyaccurateinformationofthemagnitude
ofresistancepresentinthecircuitforanalyzingitsbehavior.Measurementofresistanceis
thusoneoftheverybasicrequirementsinmanyworkingcircuits,machines,transformers,
andmeters.
Apartfromtheseapplications,resistorsareusedasstandardsforthemeasurementof
otherunknownresistancesandforthedeterminationofunknowninductanceand
capacitance.
Fromthepointofviewofmeasurement,resistancescanbeclassifiedas:
LowResistances:Allresistancesoftheorderlessthan1Ωmaybeclassifiedaslow
resistances.
MediumResistances:Resistancesintherange1Ωto100kΩmaybeclassifiedas
mediumresistances.
HighResistances:Resistanceshigherthan100kΩareclassifiedashighresistances.

MEASUREMENT OF MEDIUM RESISTANCES
Thedifferentmethodsformeasurementofmediumrangeresistancesare
(i)Ohmmetermethod,
(ii)Voltmeter–ammetermethod,
(iii)Wheatstonebridgemethod.
OhmmeterMethodforMeasuringResistance
series ohmmeter

Theseries-typeohmmeterconsistsbasicallyofasensitivedcmeasuringPMMC
ammeterconnectedinparallelwithavariableshuntR2.
ThisparallelcircuitisconnectedinserieswithacurrentlimitingresistanceR1anda
batteryofemfE.
Theentirearrangementisconnectedtoapairofterminals(A–B)towhichtheunknown
resistanceRxtobemeasuredisconnected.
Beforeactualreadingsaretaken,theterminalsA–Bmustbeshortedtogether.Atthis
positionwithRx=0,maximumcurrentflowsthroughthemeter.Theshuntresistance
R2isadjustedsothatthemeterdeflectscorrespondingtoitsrightmostfullscale
deflection(FSD)position.TheFSDpositionofthepointerismarked‘zero-resistance’,
i.e.,0Ωonthescale.
Ontheotherhand,whentheterminalsA–Barekeptopen(Rx→∞),nocurrentflows
throughthemeterandthepointercorrespondstotheleftmostzerocurrentpositionon
thescale.Thispositionofthepointerismarkedas‘∞Ω’onthescale.
Thus,themeterwillreadinfiniteresistanceatzerocurrentpositionandzeroresistance
atfull-scalecurrentposition.Seriesohmmetersthushave‘0’markattheextremeright
and‘∞’markattheextremeleftofscale(oppositetothoseforammetersand
voltmeters).
Themaindifficultyisthefactthatohmmetersareusuallypoweredbybatteries,andthe
batteryvoltagegraduallychangeswithuseandage.TheshuntresistanceR2isusedin
suchcasestocounteractthiseffectandensureproperzerosettingatalltimes.Forzero
setting,Rx=0,whereRm=internalresistanceofthebasicPMMCmetercoil.

ThecurrentI2canbeadjustedbyvaryingR2sothatthemetercurrentImcanbeheldatits
calibratedvaluewhenthemaincurrentI1changesduetodropinthebatteryemfE.
DesignofR1andR2:
Meter current Imat full scale deflection (= IFSD.)
• Meter coil resistance, Rm
• Ohmmeter battery voltage, E
• Value of the unknown resistance at half-scale deflection, (Rh), i.e., the value of Rx
when the pointer is at the middle of scale
With terminals A–B shorted, when Rx = 0
Meter carries maximum current, and current flowing out of the battery is given as

For full-scale deflection:

Shunt-type Ohmmeter
WhentheterminalsA–Bareshorted(Rx=0),themetercurrentiszero,sinceallthecurrentin
thecircuitpassesthroughtheshortcircuitedpathA–B,ratherthanthemeter.Thispositionof
thepointerismarked‘zero-resistance’,i.e.,‘0Ω’onthescale.Ontheotherhand,whenRxis
removed,i.e.,theterminalsA–Bopencircuited(Rx→∞),entirecurrentflowsthroughthe
meter.SelectingpropervalueofR1,thismaximumcurrentpositionofthepointercanbemade
toreadfullscaleofthemeter.Thispositionofthepointerismarkedas‘∞Ω’onthescale.Shunt
typeohmmeters,accordingly,has‘0Ω’attheleftmostpositioncorrespondingtozerocurrent,
and‘∞Ω’attherightmostendofthescalecorrespondingtoFSDcurrent.

Wheatstone Bridge for Measuring Resistance
TheWheatstonebridgeisthemostcommonlyused
circuitformeasurementofmediumrange
resistances.TheWheatstonebridgeconsistsoffour
resistancearms,togetherwithabattery(voltage
source)andagalvanometer(nulldetector).
Inthebridgecircuit,R3andR4aretwofixed
knownresistances,R2isaknownvariable
resistanceandRXistheunknownresistancetobe
measured.Underoperatingconditions,currentID
throughthegalvanometerwilldependonthe
differenceinpotentialbetweennodesBandC.A
bridgebalanceconditionisachievedbyvaryingthe
resistanceR2andcheckingwhetherthe
galvanometerpointerisrestingatitszeroposition.
Atbalance,nocurrentflowsthroughthe
galvanometer.Thismeansthatatbalance,
potentialsatnodesBandCareequal.

Inotherwords,atbalancethefollowingconditionsaresatisfied:
1.Thedetectorcurrentiszero,i.e.,1D=0andthusIt=I3andI2=I4
2.PotentialsatnodeBandCaresame,i.e.,VB=VC,orinotherwords,voltagedrop
inthearmABequalsthevoltagedropacrossthearmAC,i.e.,VAB=VACandvoltage
dropinthearmBDequalsthevoltagedropacrossthearmCD,i.e.,VBD=VCD
FromtherelationVAB=VACwehaveI1×Rx=I2×R2(1)
Atbalanced‘null’position,sincethegalvanometercarriesnocurrent,itasifactsasif
opencircuited,thus
Thus,measurementoftheunknownresistance
ismadeintermsofthreeknownresistances.
ThearmsBDandCDcontainingthefixed
resistancesR3andR4arecalledtheratioarms.
ThearmACcontainingtheknownvariable
resistanceR2iscalledthestandardarm.The
rangeoftheresistancevaluethatcanbe
measuredbythebridgecanbeincreasedsimply
byincreasingtheratioR3/R4.

Errors in a Wheatstone Bridge
AWheatstonebridgeisafairlyconvenientandaccuratemethodformeasuringresistance.
However,itisnotfreefromerrorsaslistedbelow:
1.Discrepanciesbetweenthetrueandmarkedvaluesofresistancesofthethreeknownarmscan
introduceerrorsinmeasurement.
2.Inaccuracyofthebalancepointduetoinsufficientsensitivityofthegalvanometermayresultin
falsenullpoints.
3.Bridgeresistancesmaychangeduetoself-heating(I2R)resultinginerrorinmeasurement
calculations.
4.Thermalemfsgeneratedinthebridgecircuitorinthegalvanometerintheconnectionpointsmay
leadtoerrorinmeasurement.
5.Errorsmaycreepintomeasurementduetoresistancesofleadsandcontacts.Thiseffectishowever,
negligibleunlesstheunknownresistanceisofverylowvalue.
6.Theremayalsobepersonalerrorsinfindingthepropernullpoint,takingreadings,orduring
calculations.
Errorsduetoinaccuraciesinvaluesofstandardresistorsandinsufficientsensitivityof
galvanometercanbeeliminatedbyusinggoodqualityresistorsandgalvanometer.
Temperaturedependentchangeofresistanceduetoself-heatingcanbeminimizedbyperforming
themeasurementwithinasshorttimeaspossible.
Thermalemfsinthebridgearmsmaycauseserioustrouble,particularlywhilemeasuringlow
resistances.Thermalemfingalvanometercircuitmaybeseriousinsomecases,socaremustbetaken
tominimizethoseeffectsforprecisionmeasurements.Somesensitivegalvanometersemployall-
coppersystems.
Theeffectofthermalemfcanbebalancedoutinpracticebyaddingareversingswitchinthecircuit
betweenthebatteryandthebridge,thenmakingthebridgebalanceforeachpolarityandaveraging
thetworesults.

FourarmsofaWheatstonebridgeareasfollows:AB=100Ω,BC=10Ω,CD=4Ω,
DA=50Ω.Agalvanometerwithinternalresistanceof20ΩisconnectedbetweenBD,
whileabatteryof10-VdcisconnectedbetweenAC.Findthecurrentthroughthe
galvanometer.FindthevalueoftheresistancetobeputonthearmDAsothatthebridge
isbalanced.
Example
SolutionConfigurationofthebridgewiththe
valuesgivenintheexampleisasshownbelow:
Tofindoutcurrentthroughthegalvanometer,it
isrequiredtofindoutTheveninequivalent
voltageacrossnodesBDandalsotheThevenin
equivalentresistancebetweenterminalsBD.
TofindoutThevenin’sequivalentvoltageacross
BD,thegalvanometerisopencircuited.
Atthiscondition,voltagedropacrossthearmBC
isgivenby

Hence,voltagedifferencebetweenthenodesBandD,ortheTheveninequivalentvoltage
betweennodesBandDisVTH=VBD=VB–VD=VBC–VDC=0.91-0.74=0.17V
ToobtaintheTheveninequivalentresistancebetweennodesBandD,the10Vsource
needtobeshorted,andthecircuitlookslikethefiguregivenbelow.

Kelvin’s Double-Bridge Method for Measuring Low Resistance
Kelvin’sdouble-bridgemethodisoneofthebestavailablemethodsformeasurementof
lowresistances.ItisactuallyamodificationoftheWheatstonebridgeinwhichtheerrors
duetocontactsandleadresistancescanbeeliminated.
Kelvin’s double bridge
incorporatestheideaofasecond
setofratioarms,namely,pand
q,andhencethename‘double
bridge’.Xistheunknownlow
resistancetobemeasured,andS
isaknownvaluestandardlow
resistance.‘r’isaverylow
resistanceconnectingleadused
connecttheunknownresistance
XtothestandardresistanceS.
AllotherresistancesP,Q,p,and
qareofmediumrange.Balance
inthebridgeisachievedby
adjustingS.

Underbalancedcondition,potentialsatthenodesaandbmustbeequalinorderthatthe
galvanometerGgives“null”deflection.Sinceatbalance,nocurrentflowsthroughthe
galvanometer,itcanbeconsideredtobeopencircuitedandthecircuitcanberepresented
as

Example:A4-terminalresistorwasmeasuredwiththehelpofaKelvin’sdouble
bridgehavingthefollowingcomponents:Standardresistor=98.02nW,innerratio
arms=98.022Ωand202W,outerratioarms=98.025Ωand201.96W,resistanceof
thelinkconnectingthestandardresistanceandtheunknownresistance=600nW.
Calculatethevalueoftheunknownresistance.

Megohmmeter, or Meggar, for High Resistance Measurement
Oneofthemostpopularportabletypeinsulationresistancemeasuringinstrumentsisthe
megohmmeterorinshort,meggar.Themeggarisusedverycommonlyformeasurement
ofinsulationresistanceofelectricalmachines,insulators,bushings,etc.
Thetraditionalanalogdeflecting-typemeggarisessentiallyapermanentmagnetcrossed-
coilshunttypeohmmeter.
Theinstrumenthasasmallpermanentmagnetdcgeneratordeveloping500Vdc(some
othermodelsalsohave100V,250V,1000or2500Vgenerators).Thegeneratorishand
driven,throughgeararrangements,andthroughacentrifugallycontrolledclutchswitch
whichslipsatapredefinedspeedsothataconstantvoltagecanbedeveloped.Some
meggarsalsohaverectifiedacaspowersupply.

Themovingsysteminsuchinstrumentsconsistsoftwocoils,thecontrolcoilCCandthe
deflectingcoilCD.Boththecoilsaremountedrigidlyonashaftthatcarriesthepointeras
well.Thetwocoilsmoveintheairgapofapermanentmagnet.Thetwocoilsarearranged
withsuchnumbersofturns,radiiofaction,andconnectedacrossthegeneratorwithsuch
polaritiesthat,forexternalmagneticfieldsofuniformintensity,thetorqueproducedbythe
individualcoilsareinoppositionthusgivinganastaticcombination.
ThedeflectingcoilisconnectedinserieswiththeunknownresistanceRXunder
measurement,afixedresistorRDandthenthegenerator.
Thecurrentcoilorthecompensatingcoil,alongwiththefixedresistanceRCisconnected
directlyacrossthegenerator.Foranyvalueoftheunknown,thecoilsandthepointertakeup
afinalsteadypositionsuchthatthetorquesofthetwocoilsareequalandbalancedagainst
eachother.
Forexample,whentheresistanceRXundermeasurementisremoved,i.e.,thetestterminals
areopen-circuited,nocurrentflowsthroughthedeflectingcoilCD,butmaximumcurrentwill
flowthroughthecontrolcoilCC.ThecontrolcoilCCthussetsitselfperpendiculartothe
magneticaxiswiththepointerindicating‘∞Ω’asmarkedinthescale.
AsthevalueofRXisbroughtdownfromopencircuitcondition,moreandmorecurrent
flowsthroughthedeflectingcoilCD,andthepointermovesawayfromthe‘∞Ω’mark
clockwiseonthescale,andultimatelyreachesthe‘0Ω’markwhenthetwotestterminalsare
shortcircuited.
Thesurfaceleakageproblemistakencareofbytheguard-wirearrangement.Theguardring
GRandtheguardwiredivertsthesurfaceleakagecurrentfromreachingthemainmoving
systemandinterferingwithitsperformance.
Tags