AnkurSachdeva16
1,567 views
29 slides
May 05, 2023
Slide 1 of 29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
About This Presentation
Propulsion, Types of Rocket Engines, Propellants and their classification, SPRE, LPRE, HPRE, Staging, Space Flights
Size: 984.73 KB
Language: en
Added: May 05, 2023
Slides: 29 pages
Slide Content
Unit-5: Rocket Propulsion
Prepared by:
Ankur Sachdeva
Assistant Professor, ME
Introduction to Propulsion
•Propulsionisamethodbywhichanobjectis
propelledinaparticulardirection.
•Theword“propulsion”stemsfromtheLatinword
propellere,wherepromeansforwardorbackward
andpelleremeansdriveorpush.
•Spacecraftmustproducethrustwhichmustbeequal
tothedragforcecausedduetothefluidmotionover
thebodyofthisspacecraftandthegravitational
force.
•Foracceleratingthespacecraft,oneneedstosupply
higherthrustthanthatofdragforcesand
gravitationalforceactingonit.
Ankur Sachdeva, ME, KIET Group of Institutions
Aeropile by Hero
It is really an interesting device for
demonstrating the principle of
reactive thrust, which is the basis of
rocket propulsion.
Ankur Sachdeva, ME, KIET Group of Institutions
History of Rocket Engines
•TherealrocketwasinventedbytheChinesearoundthetenthcenturyADwhileexperimenting
withgunpowderandbamboo.
•ThegunpowderwasdiscoveredintheninthcenturyADbyaTaoistalchemist.
•Subsequently,FengJishenmanagedtofirearocketusinggunpowderandbamboo
•AChinesescholar,WanHu,haddevelopedarocketsledthatcomprisedofaseriesofrockets
attachedtotheseat.
Ankur Sachdeva, ME, KIET Group of Institutions
Classification of Propulsive Devices
Ankur Sachdeva, ME, KIET Group of Institutions
Comparison Between Air-Breathing and
Rocket Engines
Ankur Sachdeva, ME, KIET Group of Institutions
Types of Rocket Engines
•On the basis of application:
•Space Rockets
•Military Rockets
•Weather Rockets
•Aircraft propulsion
•On the basis of no. of stages:
•Single stage
•Multi stage
•On the basis of size and range:
•Small-range small rockets
•Large-range large rockets
Ankur Sachdeva, ME, KIET Group of Institutions
Chemical Rocket Engines
•Incaseofchemicalrocketengines,chemicalenergyreleasedduringtheburningoffueland
oxidizerisusedtoraisethetemperatureandpressureofthegaswhichisexpandedinaCDnozzle
toproducethrust.
•Generally,thehotgasesathighpressureareacceleratedtohighsupersonicvelocitiesintherange
of1500–4000m/sforproducingthrust.
•bothfuelandoxidizerarebeingcarriedalongwiththeengineunlikeinair-breathingengines.
•Basedonthephysicalstateofthepropellant(fuelandoxidizer),chemicalrocketenginescanbe
broadlydividedintothreecategories:
(1)solidpropellant,
(2)liquidpropellant,
(3)hybridpropellant.
Ankur Sachdeva, ME, KIET Group of Institutions
Solid Propellant Rocket Engines
Advantages
•Itissimpletodesignanddevelop.
•Itiseasiertohandleandstoreunlikeliquid
propellant.
•DetonationhazardsofmanymodernSPREsare
negligible.
•BetterreliabilitythanLiquidPropellantRocket
Engine(LPRE)(>99%).
•Development and production cost of SPREs is
much smaller than that of LPREs, especially in the
high-thrust bracket
Disadvantages
•It has lower specific impulse compared to
LPREs and hybrid propellant rocket engines
(HPREs).
•It is difficult to turn off its operation unlike in
an LPRE.
•Transport and handling of solid propellants are
quite cumbersome.
•Thecracksonthepropellantcancausean
explosion.
Ankur Sachdeva, ME, KIET Group of Institutions
Liquid Propellant Rocket Engines
Advantages
•An LPRE can be reused.
•It provides greater control over thrust.
•It can have higher values of specific impulse.
•It can be used for long-duration applications.
•It is easy to control this engine as one can vary the
propellant flow rate easily.
•The heat loss from the combustion gas can be
utilized for heating the incoming propellant.
Disadvantages
•Thisengineisquitecomplexcomparedtothe
SPRE.
•Itislessreliableasthereisapossibilityof
malfunctioningoftheturbopumpinjectorsand
valves.
•Certainliquidpropellantsrequireadditionalsafety
precaution.
•Ittakesmuchlongertodesignanddevelop.
•Itbecomesheavy,particularlyforshort-range
application.
Ankur Sachdeva, ME, KIET Group of Institutions
Hybrid Propellant Rocket Engines
Advantages
•An HPRE can be reused.
•It provides greater control over thrust.
•It has relatively lower system cost compared
to the LPRE.
•It can have higher values of average specific
impulse compared to the SPRE.
Disadvantages
•Thisengineisquitecomplexcomparedtothe
LPRE.
•It takes much longer to design and develop.
•It becomes heavy, particularly for short-range
application.
•Certainliquidpropellantsrequireadditional
safetyprecaution
Ankur Sachdeva, ME, KIET Group of Institutions
What is a Propellant
•Apropellantconsistsofallthechemicalmaterials,includingfuelandoxidizer,
alongwithcertainadditivesnecessaryforsustainingthecombustionprocessto
producehigh-pressurehotgases,thatwhichareexpandedinanozzletoproduce
thrust.
•Principalingredientsofapropellantarethefuelandtheoxidizer.
•Fuelisachemicalsubstancethatreactswithanoxidizerwhilereleasingthermal
energy
Ankur Sachdeva, ME, KIET Group of Institutions
Classification of Propellants
Ankur Sachdeva, ME, KIET Group of Institutions
Classification of Propellants
•Homogeneouspropellant:
•fuelandoxidizerarecontainedinthesamemoleculeofthepropellant.
•Heterogenouspropellant:
•solidfuelandoxidizerretaintheirrespectivephysicalidentities.
•Monopropellants:
•A liquid propellant that contains both the fuel and the oxidizer in a single chemical is called a
monopropellant.
•Example:
•HydrogenPeroxide,Hydrazine,Nitroglycerine,andNitromethane
•Bipropellants:
•A liquid propellant in which an oxidizer and a fuel are stored separately in the tanks and mixed in the
combustion chamber.
•Example:
•Liquidoxygenandliquidhydrogen,Liquidoxygenandkerosene.
•Hypergolic propellants:
•Liquid fuel and oxidizer react spontaneously without external ignition energy
•Nonhypergolic propellants:
•Suitableamountofignitionenergyisprovidedtoignitetheliquidfuelandoxidizerforcombustiontotakeplace
Ankur Sachdeva, ME, KIET Group of Institutions
GENERAL CHARACTERISTICS OF PROPELLANTS
•Propellantmusthavehighchemicalenergyreleasesothatitcanhavehighercombustiontemperature
leadingtohighcharacteristicvelocityC*.
•ItcanhavelowmolecularweightofcombustionproductleadingtohighexhaustvelocityVeandthuscan
havehighspecificimpulseIsp.
•Itcanhaveahighdensitysuchthatlargeamountofchemicalenergycanbestoredinthesmallestvolume
andthuscanhaveacompactdesign.
•Easytoigniteevenunderlow-pressurecondition.
•Physicallyandchemicallystablewithrespecttotime.
•Smoke-freeandnontoxicinnature.
•Easyandexpensivetomanufactureandhandleduringoperation.
•Easilyavailableandlowprice.
•Lesspronetoexplosionhazard.
•Lowemissionlevel.
Ankur Sachdeva, ME, KIET Group of Institutions
Propellant Feed System
•Themainfunctionofthepropellantfeed
systemistosupplytherequisiteamountof
propellantbytransferringitfromthe
propellanttanktothethrustchamberata
higherdesiredpressurebywhichasprayof
liquidpropellantcanbeformed.
•Forthispurpose,thepressureofthe
propellantinthefeedsystemmustberaised,
whichcanbeaccomplishedbysupplying
energy.
Ankur Sachdeva, ME, KIET Group of Institutions
Gas Pressure Feed System
•Thisgaspressurefeedsystemisoneofthesimplestmethodsofpressurizingthepropellantinarocketengineinwhich
high-pressuregasisbeingusedtoforcetheliquidpropellantsinaverycontrolledmannerfromtheirrespectivetanks.
•Itconsistsofahigh-pressuregastank,anon-offvalve,apressureregulator,propellanttanks,feedlines
•Propellanttanksarefilledinthebeginningfollowedbyhigh-pressuregastanks.
•Subsequently,ahigh-pressuregasvalveisactuatedtoallowhigh-pressuregastoenterthepropellanttankinaregulated
manneratconstantpressurethroughcheckvalves.
•Oncedesiredpressureisestablishedinthepropellanttanks,thepropellantscanbefedthroughinjectorsintothe
combustionchamberbyactuatingthepropellantvalves.
•Commonly,thepressurizedgasisallowedtopassthrough,evenaftercompleteconsumptionofpropellant,toscavenge
andcleanthefeedlines,particularlyforreusablerocketengines,namely,space-maneuverrockets.
Ankur Sachdeva, ME, KIET Group of Institutions
Turbo Feed Pump System
•Turbopumpshelprocketsachieveahighpower-to-weight
ratiobyfeedingpressurizedpropellanttotherocket’s
combustionchamber.
•Thepump-fedsystemusesaturbopumptopressurizeand
feedthepropellantsintothethrustchamberatrelativelyhigh
pressures.
•Theturbopumptypicallyconsistsofoneormorepumping
elementsdrivenbyaturbine.
•Theenergytopowertheturbineitselfisprovidedbythe
expansionofhigh-pressuregases,whichareusually
mixturesofthepropellantsbeingpumped.
Ankur Sachdeva, ME, KIET Group of Institutions
Terminal velocity
•Anobjectwhichisfallingthroughtheatmosphereissubjectedtotwo
externalforces.
•Oneforceisthegravitationalforce,expressedastheweightoftheobject.The
otherforceistheairresistanceordragoftheobject.
•Thenetexternalforce(F)isequaltothedifferencebetweentheweightandthe
dragforces(W-D).
•Whendragisequaltoweight,thereisnonetexternalforceontheobjectandthe
objectwillfallataconstantvelocityasdescribedbyNewton'sfirstlawofmotion.
•Theconstantvelocityiscalledtheterminalvelocity
Ankur Sachdeva, ME, KIET Group of Institutions
Terminal velocity
Ankur Sachdeva, ME, KIET Group of Institutions
Space Flights
•Rocketenginesareemployedtolaunchaspacecraftfromthesurfaceoftheearth.
•Thespacecraftmovesaroundanorbitoftheearthoranyotherplanetgovernedbythelocal
gravitationalfieldandmomentumofthespacecraft.
•Thisorbitcanbeeithercircularorellipticinshape.
•Forthemotionofthespacecraftinacircularorbit,thegravitationalforceF
gholdingthespacecraft
canbedeterminedbyusingNewton’slawofgravitation:
•Where M is the mass of the planet (earth), m is the mass of the space vehicle
•R is the distance between the two masses, and G is the universal gravity constant (G = 6.67 x 10
−11
m
3
/kg s
2
)
•ω is the angular velocity of the mass m
Ankur Sachdeva, ME, KIET Group of Institutions
Space Flights
•The gravitational force F
gis balanced by the pseudo-centrifugal force mω
2
R.
•The angular velocity ω and orbital velocity V
ofrom can be evaluated easily as follows:
•The orbital velocity decreases nonlinearly with the radius of the orbit.
•The time period required to revolvearound this orbit can be determined as follows:
•Thetimeperiodperrevolutionincreaseswiththeradiusoftheorbitatahigherratecomparedto
theorbitalvelocity.
Ankur Sachdeva, ME, KIET Group of Institutions